Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Publication year range
1.
Chimia (Aarau) ; 78(4): 209-214, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38676611

ABSTRACT

Antibiotics reach agricultural soils via fertilization with manure and biosolids as well as irrigation withwastewater and have the potential to be taken up by growing crops. The fate of antibiotics in terms of uptakefrom soil to plants, as well as translocation from root to leaves, is determined by a combination of antibiotic'sphysio-chemical (e.g. speciation, lipophilicity), soil (e.g. organic carbon content, pH) and plant (e.g.transpiration rates) characteristics. In this meta-analysis, a literature search was executed to obtain an overview of antibiotic uptake to plants, with an aim to identify uptake and translocation patterns of different antibiotic classes. Overall, we found that higher uptake of tetracyclines to plant leaves was observed compared to sulfonamides. Differences were also observed in translocation within the plants, where tetracyclines were found in roots and leaves with close to equal concentrations, while the sulfonamides represented a tendency to accumulate to the root fraction. The antibiotic's characteristics have a high influence on their fate, for example, the high water-solubility and uncharged speciation in typical agricultural soil pH ranges likely induces tetracycline uptake from soil and translocation in plant. Despite the advances in knowledge over the past decade, our meta-analysis indicated that the available research is focused on a limited number of analytes and antibiotic classes. Furthermore, fastgrowing plant species (e.g. spinach, lettuce, and radish) are overly represented in studies compared to crop species with higher significance for human food sources (e.g. corn, wheat, and potato), requiring more attention in future research.


Subject(s)
Anti-Bacterial Agents , Plants , Soil , Anti-Bacterial Agents/metabolism , Soil/chemistry , Plants/metabolism , Plants/chemistry , Soil Pollutants/metabolism , Soil Pollutants/analysis , Biological Transport , Plant Roots/metabolism , Plant Roots/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry
2.
Environ Sci Technol ; 57(6): 2333-2340, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36723500

ABSTRACT

Phytotoxins (PTs) are bioactive secondary metabolites produced by plants. More recently, they have been recognized as important aquatic micropollutants. Despite that, only a few PTs have been detected and reported in terrestrial and aquatic environments, while their source and leaching pathways remain largely unclear. Herein, we established a novel approach named source-supported suspect screening (4S) to discover PTs in different environments, investigate their environmental occurrences, identify their sources, and initiate discussions on their leaching mechanisms. The 4S-approach was demonstrated on a five-month Lupinus angustifolius L. (L. angustifolius) crop field experiment, where plant, topsoil, drainage water, and surface water were sampled and analyzed. As a result, 72 PTs (flavonoids and alkaloids) were identified at high confidence, with 10 PTs fully confirmed. Fifty-three PTs detected in soil or water were linked to L. angustifolius, among which 26 PTs were coherently detected in all three environmental compartments. The occurrence and abundance of PTs in terrestrial soil and aquatic environments were influenced by the plant growth stage and precipitation. Soil served as an intermedium when PTs leached from L. angustifolius to the drainage water, while the degree of retardation and eventual occurrence in the aquatic environment depended on both PTs and soil physico-chemical properties.


Subject(s)
Alkaloids , Lupinus , Lupinus/chemistry , Soil , Water
3.
Anal Bioanal Chem ; 415(24): 6009-6025, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37550544

ABSTRACT

A multi-residue trace analytical method is presented to accurately quantify 146 currently used pesticides in (agricultural) soils with varying soil properties. Pesticides were extracted using an optimized quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach and chemical analysis was carried out by liquid chromatography coupled to tandem mass spectrometry (triple quadrupole). Quantification was based on matrix-matched internal standards calibration, using 95 isotopically labeled analyte analogues. In contrast to the common approach of method validation using soils freshly spiked with analytes shortly before the extraction, our method is additionally validated via an in-house prepared partly aged soil, which contains all target pesticides and via agricultural field soils with native pesticide residues. The developed method is highly sensitive (median method limit of quantification: 0.2 ng/g), precise (e.g., median intra-day and inter-day method precision both ~ 4% based on field soils), and true ((i) quantified pesticide concentrations of the partly aged soil remained stable during 6 months, were close to the initially spiked nominal concentration of 10 ng/g, and thus can be used to review trueness in the future; (ii) median freshly spiked relative recovery: 103%; and (iii) participation in a ring trial: median z-scores close to one (good to satisfactory result)). Its application to selected Swiss (agricultural) soils revealed the presence of in total 77 different pesticides with sum concentrations up to 500 ng/g. The method is now in use for routine soil monitoring as part of the Swiss Action Plan for Risk Reduction and Sustainable Use of Plant Protection Products.

4.
Chimia (Aarau) ; 77(11): 750-757, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38047842

ABSTRACT

Synthetic pesticides are widely applied in modern agriculture, where they are used against diseases, pests, and weeds to secure crop yield and quality. However, their intensive application has led to widespread contamination of the environment, including soils. Due to their inherent toxicity, they might pose a risk to soil health by causing harm to non-target organisms and disrupting ecosystem services in both agricultural and other exposed soils. Following the Swiss National Action Plan on the reduction of pesticide risks, Agroscope has conducted several soil monitoring studies that are briefly presented here. All of them resort to different multi-residue trace analytical approaches to simultaneously quantify up to about 150 modern pesticides by either accelerated solvent, or Quick, Easy, Cheap, Efficient, Rugged, Safe (QuEChERS) extraction, followed by separation and detection with liquid chromatography-triple quadrupole mass spectrometry. While partly still in progress, our investigations led to the following major findings this far: Multiple pesticides are commonly present in soils, with individual concentrations in agricultural soils often reaching up to a few tens of µg/kg. Pesticide occurrence and concentrations in agricultural soils primarily depend on land use, land use history and cultivated crops. Pesticides can prevail much longer than predicted by their half-lives, and were found in soils even decades after conversion from conventional to organic farming. Corresponding residual fractions can be in the order of a few percent of the originally applied amounts. We further found negative associations of pesticide residues with the abundance of beneficial soil life, underpinning their potential risk to the fertility of agricultural soils. Traces of pesticides are also detected in soils to which they were never applied, indicating contamination, e.g., via spray drift or atmospheric deposition. These results confirm the general notion of both scientists and legislators that prospective risk assessments (RA; as executed during registration and use authorization) should be confirmed and adjusted by retrospective RA (e.g., by environmental monitoring studies of currently used compounds) to jointly lead to an overall reduced environmental risk of pesticides.


Subject(s)
Pesticides , Soil , Switzerland , Ecosystem , Prospective Studies , Retrospective Studies , Agriculture
5.
Environ Sci Technol ; 56(19): 13686-13695, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36099238

ABSTRACT

The intensive use of pesticides and their subsequent distribution to the environment and non-target organisms is of increasing concern. So far, little is known about the occurrence of pesticides in soils of untreated areas─such as ecological refuges─as well as the processes contributing to this unwanted pesticide contamination. In this study, we analyzed the presence and abundance of 46 different pesticides in soils from extensively managed grassland sites, as well as organically and conventionally managed vegetable fields (60 fields in total). Pesticides were found in all soils, including the extensive grassland sites, demonstrating a widespread background contamination of soils with pesticides. The results suggest that after conversion from conventional to organic farming, the organic fields reach pesticide levels as low as those of grassland sites not until 20 years later. Furthermore, the different pesticide composition patterns in grassland sites and organically managed fields facilitated differentiation between long-term persistence of residues and diffuse contamination processes, that is, short-scale redistribution (spray drift) and long-scale dispersion (atmospheric deposition), to offsite contamination.


Subject(s)
Pesticides , Soil , Agriculture , Grassland , Pesticides/analysis , Soil/chemistry , Vegetables
6.
Environ Sci Technol ; 56(8): 4702-4710, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35353522

ABSTRACT

Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.


Subject(s)
Organic Chemicals , Soil Pollutants , Adsorption , Carbon/chemistry , Organic Chemicals/chemistry , Soil , Soil Pollutants/analysis , Water/chemistry
7.
Environ Monit Assess ; 194(6): 441, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35596091

ABSTRACT

Cuba is a country with considerable potential for economic growth, and special efforts are made to increase the agricultural output. As food production depends on the quality of soils, heavy metal concentrations were measured in 39 soils in the province of Mayabeque, Cuba, and interpreted in light of anthropogenic activities and pedogenic conditions (soil type and properties). With median concentrations of 1.8 Cd, 60.3 Cr, 48.1 Cu, 36.2 Ni, 16.7 Pb, 55.0 Zn, and 0.1 mg/kg Hg, soils of Mayabeque were mostly below Cuban quality reference values (QRV) representing benchmarks of quality standards but no official threshold values. Only Cd concentrations were in many cases above the QRV of 0.6 mg/kg and some Cu concentrations above the one of 83 mg/kg. While Cd, Cr, and Ni concentrations were rather pedogenically driven, Cu, Pb, Zn, and Hg contents were rather anthropogenically influenced. When evaluated statistically, Cd and Cr showed most times a significant influence of both sources. In contrast, Ni and Zn could not be significantly related with the origins investigated in this study. Hence, the allocation of heavy metal concentrations to pedogenic or anthropogenic contamination or pollution sources is tentative and needs further investigations. Nevertheless, the present data adds information on soil heavy metal concentrations in the Caribbean region, serves as reference before further industrial development, and sets the ground for adaptation of the QRV for Cd and possibly future national environmental standards.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Cadmium , China , Cuba , Environmental Monitoring , Lead , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
8.
Environ Sci Technol ; 55(8): 4762-4771, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33754714

ABSTRACT

Natural toxins are multifunctional, often ionizable organic compounds increasingly detected in the environment. Surprisingly little is known about their interactions with soil organic carbon, although sorption largely controls transport, bioavailability, and dissipation. For a set of 117 natural toxins from 36 compound classes the pH-dependent organic carbon-water distribution coefficient (Doc) was quantified using a soil column chromatography approach under changing conditions with regards to pH, ionic strength, and the major inorganic cation in solution. Natural toxins could be assigned to groups with either hydrophobic partitioning or specific interactions (complexation reactions, cation exchange) as dominating sorption mechanisms. The complex interplay of interactions in the sorption of natural toxins was equally influenced by sorbate, sorbent, and solution specific characteristics. High variability in sorption was particularly observed in the presence of Ca2+ resulting in Doc being enhanced by a factor of 10 when the pH was increased from 4.5 to 6. Sorbates following this trend contain either functional groups able to form ternary complexes via Ca2+ or aromatic moieties adjacent to protonated N presumably stabilizing cation exchange reactions. Although sorption was often stronger than predicted, investigated natural toxins were highly mobile under all considered conditions.


Subject(s)
Soil Pollutants , Soil , Adsorption , Carbon , Organic Chemicals , Soil Pollutants/analysis
9.
Environ Sci Technol ; 55(2): 1036-1044, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33372520

ABSTRACT

Pyrrolizidine alkaloids (PAs) are found to be toxic pollutants emitted into the environment by numerous plant species, resulting in contamination. In this article, we investigate the occurrence of PAs in the aquatic environment of small Swiss streams combining two different approaches. Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites produced by numerous plant species. Although they were classified as persistent and mobile and found to be emitted into the environment, their occurrence in surface waters is largely unknown. Therefore, we performed a retrospective data analysis of two extensive HRMS campaigns each covering five small streams in Switzerland over the growing season. All sites were contaminated with up to 12 individual PAs and temporal detection frequencies between 36 and 87%. Individual PAs were in the low ng/L range, but rain-induced maximal total PA concentrations reached almost 100 ng/L in late spring and summer. Through PA patterns in water and plants, several species were tentatively identified as the source of contamination, with Senecio spp. and Echium vulgare being the most important. Additionally, two streams were monitored, and PAs were quantified with a newly developed, faster, and more sensitive LC-MS/MS method to distinguish different plant-based and indirect human PA sources. A distinctly different PA fingerprint in aqueous plant extracts pointed to invasive Senecio inaequidens as the main source of the surface water contamination at these sites. Results indicate that PA loads may increase if invasive species are sufficiently abundant.


Subject(s)
Pyrrolizidine Alkaloids , Chromatography, Liquid , Humans , Retrospective Studies , Switzerland , Tandem Mass Spectrometry
10.
Environ Sci Technol ; 55(5): 2919-2928, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33534554

ABSTRACT

Pesticides are applied in large quantities to agroecosystems worldwide. To date, few studies assessed the occurrence of pesticides in organically managed agricultural soils, and it is unresolved whether these pesticide residues affect soil life. We screened 100 fields under organic and conventional management with an analytical method containing 46 pesticides (16 herbicides, 8 herbicide transformation products, 17 fungicides, seven insecticides). Pesticides were found in all sites, including 40 organic fields. The number of pesticide residues was two times and the concentration nine times higher in conventional compared to organic fields. Pesticide number and concentrations significantly decreased with the duration of organic management. Even after 20 years of organic agriculture, up to 16 different pesticide residues were present. Microbial biomass and specifically the abundance of arbuscular mycorrhizal fungi, a widespread group of beneficial plant symbionts, were significantly negatively linked to the amount of pesticide residues in soil. This indicates that pesticide residues, in addition to abiotic factors such as pH, are a key factor determining microbial soil life in agroecosystems. This comprehensive study demonstrates that pesticides are a hidden reality in agricultural soils, and our results suggest that they have harmful effects on beneficial soil life.


Subject(s)
Pesticide Residues , Pesticides , Soil Pollutants , Agriculture , Pesticide Residues/analysis , Pesticides/analysis , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL