Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Pharmacol Exp Ther ; 389(2): 174-185, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38531640

ABSTRACT

There is a debate on whether H1-histamine receptors can alter contractility in the mammalian heart. We studied here a new transgenic mouse model where we increased genetically the cardiac level of the H1-histamine receptor. We wanted to know if histamine could augment or decrease contractile parameters in mice with cardiac-specific overexpression of human H1-histamine receptors (H1-TG) and compared these findings with those in littermate wild-type mice (WT). In H1-TG mice, we studied the presence of H1-histamine receptors by autoradiography of the atrium and ventricle using [3H]mepyramine. The messenger RNA for human H1-histamine receptors was present in the heart from H1-TG and absent from WT. Using in situ hybridization, we noted mRNA for the human H1-histamine receptor in cardiac cells from H1-TG. We noted that histamine (1 nM-10 µM) in paced (1 Hz) left atrial preparations from H1-TG, exerted at each concentration of histamine initially reduced force of contraction and then raised contractile force. Likewise, in spontaneously beating left atrial preparations from H1-TG, we noted that histamine led to a transient reduction in the spontaneous beating rate followed by an augmentation in the beating rate. The negative inotropic and chronotropic and the positive inotropic effects on histamine in isolated atrial muscle strips from H1-TG were attenuated by the H1-histamine receptor antagonist mepyramine. Histamine failed to exert an increased force or reduce the heartbeat in atrial preparations from WT. We concluded that stimulation of H1-histamine-receptors can decrease and then augment contractile force in the mammalian heart and stimulation of H1-histamine receptors exerts a negative chronotropic effect. SIGNIFICANCE STATEMENT: We made novel transgenic mice with cardiomyocyte-specific high expressional levels of the human H1-histamine receptor to contribute to the clarification of the controversy on whether H1-histamine receptors increase or decrease contractility and beating rate in the mammalian heart. From our data, we conclude that stimulation of H1-histamine receptors first decrease and then raise contractile force in the mammalian heart but exert solely negative chronotropic effects.


Subject(s)
Histamine , Myocardial Contraction , Humans , Mice , Animals , Mice, Transgenic , Histamine/pharmacology , Pyrilamine/pharmacology , Heart , Receptors, Histamine , Heart Atria , Heart Rate , Receptors, Histamine H1/genetics , Mammals
2.
Int J Mol Sci ; 25(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273142

ABSTRACT

Marfan syndrome (MFS) is a hereditary condition accompanied by disorders in the structural and regulatory properties of connective tissue, including elastic fibers, due to a mutation in the gene encodes for fibrillin-1 protein (FBN1 gene) and the synthesis of abnormal fibrillin-1 glycoprotein. Despite the high potential of mast cells (MCs) to remodel the extracellular matrix (ECM), their pathogenetic significance in MFS has not been considered yet. The group of patients with Marfan syndrome included two mothers and five children (three girls aged 4, 11, and 11 and two boys aged 12 and 13). Normal skin was examined in two children aged 11 and 12. Histochemical, monoplex, and multiplex immunohistochemical techniques; combined protocols of simultaneous histochemical and immunohistochemical staining (the results of staining were assessed using light, epifluorescence, and confocal microscopy); and bioinformatics algorithms for the quantitative analysis of detected targets were used to evaluate mast cells and their relationship with other cells from extracellular structures in the skin dermis. Analysis of the skin MC population in children with Marfan syndrome revealed a considerably increased number of intra-organic populations with the preservation of the specific Tryptase+Chymase+CPA3+ protease profile typical of the skin. The features of the MC histotopography phenotype in MFS consisted of closer colocalization with elastic fibers, smooth muscle cells, and fibroblasts. MCs formed many intradermal clusters that synchronized the activity of cell functions in the stromal landscape of the tissue microenvironment with the help of spatial architectonics, including the formation of cell chains and the creation of fibrous niches. In MCs, the expression of specific proteases, TGF-ß, and heparin increased, with targeted secretion of biologically active substances relative to the dermal elastic fibers, which had specific structural features in MFS, including abnormal variability in thickness along their entire length, alternating thickened and thinned areas, and uneven surface topography. This paper discusses the potential role of MCs in strain analysis (tensometry) of the tissue microenvironment in MFS. Thus, the quantitative and qualitative rearrangements of the skin MC population in MFS are aimed at altering the stromal landscape of the connective tissue. The results obtained should be taken into account when managing clinical signs of MFS manifested in other pathogenetically critical structures of internal organs, including the aorta, tendons, cartilage, and parenchymal organs.


Subject(s)
Dermis , Elastic Tissue , Marfan Syndrome , Mast Cells , Humans , Marfan Syndrome/metabolism , Marfan Syndrome/pathology , Marfan Syndrome/genetics , Mast Cells/metabolism , Mast Cells/pathology , Child , Male , Female , Elastic Tissue/metabolism , Elastic Tissue/pathology , Child, Preschool , Dermis/pathology , Dermis/metabolism , Adolescent , Fibrillin-1/metabolism , Fibrillin-1/genetics , Skin/metabolism , Skin/pathology , Extracellular Matrix/metabolism , Adipokines
3.
Histochem Cell Biol ; 159(4): 353-361, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36598563

ABSTRACT

This study provides a combined histochemical method for detecting enzyme activity of chloroacetate esterase simultaneously with immunolabeling of the components of a specific tissue microenvironment on formalin-fixed, paraffin-embedded specimens. Chromogenic detection of the molecular targets within and outside the mast cells provides novel options in determining the histoarchitectonics of organ-specific mast cell populations, studying the functional significance of chloroacetate esterase and specifying the immune landscape of the tissue microenvironment.


Subject(s)
Carboxylic Ester Hydrolases , Mast Cells , Carboxylic Ester Hydrolases/analysis , Histological Techniques , Coloring Agents
4.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047472

ABSTRACT

The mechanisms of ovarian endometrioid cyst formation, or cystic ovarian endometriosis, still remain to be elucidated. To address this issue, we analyzed the involvement of mast cell (MC) tryptase and carboxypeptidase A3 (CPA3) in the development of endometriomas. It was found that the formation of endometrioid cysts was accompanied by an increased MC population in the ovarian medulla, as well as by an MC appearance in the cortical substance. The formation of MC subpopulations was associated with endometrioma wall structures. An active, targeted secretion of tryptase and CPA3 to the epithelium of endometrioid cysts, immunocompetent cells, and the cells of the cytogenic ovarian stroma was detected. The identification of specific proteases in the cell nuclei of the ovarian local tissue microenvironment suggests new mechanisms for the regulatory effects of MCs. The cytoplasmic outgrowths of MCs propagate in the structures of the stroma over a considerable distance; they offer new potentials for MC effects on the structures of the ovarian-specific tissue microenvironment under pathological conditions. Our findings indicate the potential roles of MC tryptase and CPA3 in the development of ovarian endometriomas and infer new perspectives on their uses as pharmacological targets in personalized medicine.


Subject(s)
Cysts , Endometriosis , Humans , Female , Tryptases , Mast Cells , Carboxypeptidases , Chymases , Tumor Microenvironment
5.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003728

ABSTRACT

Smooth muscle tissue (SMT) is one of the main structural components of visceral organs, acting as a key factor in the development of adaptive and pathological conditions. Despite the crucial part of SMT in the gastrointestinal tract activity, the mechanisms of its gravisensitivity are still insufficiently studied. The study evaluated the content of smooth muscle actin (α-SMA) in the membranes of the gastric fundus and jejunum in C57BL/6N mice (30-day space flight), in Mongolian gerbils Meriones unguiculatus (12-day orbital flight) and after anti-orthostatic suspension according to E.R. Morey-Holton. A morphometric analysis of α-SMA in the muscularis externa of the stomach and jejunum of mice and Mongolian gerbils from space flight groups revealed a decreased area of the immunopositive regions, a fact indicating a weakening of the SMT functional activity. Gravisensitivity of the contractile structures of the digestive system may be due to changes in the myofilament structural components of the smooth myocytes or myofibroblast actin. A simulated antiorthostatic suspension revealed no significant changes in the content of the α-SMA expression level, a fact supporting an alteration in the functional properties of the muscularis externa of the digestive hollow organs under weightless environment. The data obtained contribute to the novel mechanisms of the SMT contractile apparatus remodeling during orbital flights and can be used to improve preventive measures in space biomedicine.


Subject(s)
Actins , Jejunum , Animals , Mice , Actins/metabolism , Jejunum/metabolism , Gerbillinae/metabolism , Mice, Inbred C57BL , Stomach , Muscle, Smooth/metabolism
6.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298253

ABSTRACT

Barrett's esophagus (BE) is a premalignant lesion that can develop into esophageal adenocarcinoma (EAC). The development of Barrett's esophagus is caused by biliary reflux, which causes extensive mutagenesis in the stem cells of the epithelium in the distal esophagus and gastro-esophageal junction. Other possible cellular origins of BE include the stem cells of the mucosal esophageal glands and their ducts, the stem cells of the stomach, residual embryonic cells and circulating bone marrow stem cells. The classical concept of healing a caustic lesion has been replaced by the concept of a cytokine storm, which forms an inflammatory microenvironment eliciting a phenotypic shift toward intestinal metaplasia of the distal esophagus. This review describes the roles of the NOTCH, hedgehog, NF-κB and IL6/STAT3 molecular pathways in the pathogenesis of BE and EAC.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Humans , Barrett Esophagus/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/complications , Signal Transduction , Tumor Microenvironment
7.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768262

ABSTRACT

Mechanisms of adaptive rearrangements of the fibrous extracellular matrix of connective tissues under microgravity practically remain unexplored, despite the most essential functions of the stroma existing to ensure the physiological activity of internal organs. Here we analyzed the biomaterial (the skin dermis) of C57BL/6J mice from the Rodent Research-4 experiment after a long stay in space flight. The biomaterial was fixed onboard the International Space Station. It was found that weightlessness resulted in a relative increase in type III collagen-rich fibers compared to other fibrous collagens in the skin. The number of mast cells in the skin did not change, but their secretory activity increased. At the same time, co-localization of mast cells with fibroblasts, as well as impregnated fibers, was reduced. Potential molecular-cellular causes of changes in the activity of fibrillogenesis under zero-gravity conditions and the slowdown of the polymerization of tropocollagen molecules into supramolecular fibrous structures, as well as a relative decrease in the number of fibrous structures with a predominant content of type-I collagen, are discussed. The data obtained evidence of the different sensitivity levels of the fibrous and cellular components of a specific tissue microenvironment of the skin to zero-gravity conditions. The obtained data should be taken into account in the systematic planning of long-term space missions in order to improve the prevention of undesirable effects of weightlessness.


Subject(s)
Space Flight , Weightlessness , Mice , Animals , Mast Cells , Mice, Inbred C57BL , Extracellular Matrix , Collagen
8.
Int J Mol Sci ; 24(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37686410

ABSTRACT

Mast cell (MC)-specific proteases are of particular interest for space biology and medicine due to their biological activity in regulating targets of a specific tissue microenvironment. MC tryptase and chymase obtain the ability to remodel connective tissue through direct and indirect mechanisms. Yet, MC-specific protease expression under space flight conditions has not been adequately investigated. Using immunohistochemical stainings, we analyzed in this study the protease profile of the jejunal, gastric, and hepatic MC populations in three groups of Mongolian gerbils-vivarium control, synchronous experiment, and 12-day orbital flight on the Foton-M3 spacecraft-and in two groups-vivarium control and anti-orthostatic suspension-included in the experiment simulating effects of weightlessness in the ground-based conditions. After a space flight, there was a decreased number of MCs in the studied organs combined with an increased proportion of chymase-positive MCs and MCs with a simultaneous content of tryptase and chymase; the secretion of specific proteases into the extracellular matrix increased. These changes in the expression of proteases were observed both in the mucosal and connective tissue MC subpopulations of the stomach and jejunum. Notably, the relative content of tryptase-positive MCs in the studied organs of the digestive system decreased. Space flight conditions simulated in the synchronous experiment caused no similar significant changes in the protease profile of MC populations. The space flight conditions resulted in an increased chymase expression combined with a decreased total number of protease-positive MCs, apparently due to participating in the processes of extracellular matrix remodeling and regulating the state of the cardiovascular system.


Subject(s)
Space Flight , Weightlessness , Animals , Chymases , Gerbillinae , Mast Cells , Tryptases , Endopeptidases , Serine Proteases , Stomach
9.
Mol Cell Biochem ; 477(6): 1789-1801, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35312907

ABSTRACT

Calsequestrin (CSQ2) is the main Ca2+-binding protein in the sarcoplasmic reticulum of the mammalian heart. In order to understand the function of calsequestrin better, we compared two age groups (young: 4-5 months of age versus adult: 18 months of age) of CSQ2 knock-out mice (CSQ2(-/-)) and littermate wild-type mice (CSQ2(+/+)). Using echocardiography, in adult mice, the basal left ventricular ejection fraction and the spontaneous beating rate were lower in CSQ2(-/-) compared to CSQ2(+/+). The increase in ejection fraction by ß-adrenergic stimulation (intraperitoneal injection of isoproterenol) was lower in adult CSQ2(-/-) versus adult CSQ2(+/+). After hypoxia in vitro (isolated atrial preparations) by gassing the organ bath buffer with 95% N2, force of contraction in electrically driven left atria increased to lower values in young CSQ2(-/-) than in young CSQ2(+/+). In addition, after global ischemia and reperfusion (buffer-perfused hearts according to Langendorff; 20-min ischemia and 15-min reperfusion), the rate of tension development was higher in young CSQ2(-/-) compared to young CSQ2(+/+). Finally, we evaluated signs of inflammation (immune cells, autoantibodies, and fibrosis). However, whereas no immunological alterations were found between all investigated groups, pronounced fibrosis was found in the ventricles of adult CSQ2(-/-) compared to all other groups. We suggest that in young mice, CSQ2 is important for cardiac performance especially in isolated cardiac preparations under conditions of impaired oxygen supply, but with differences between atrium and ventricle. Lack of CSQ2 leads age dependently to fibrosis and depressed cardiac performance in echocardiographic studies.


Subject(s)
Calcium , Calsequestrin , Animals , Calcium/metabolism , Calsequestrin/genetics , Calsequestrin/metabolism , Fibrosis , Heart Atria/metabolism , Hypoxia/metabolism , Ischemia/metabolism , Mammals/metabolism , Mice , Mice, Knockout , Myocardial Contraction , Sarcoplasmic Reticulum/metabolism , Stroke Volume , Ventricular Function, Left
10.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012196

ABSTRACT

Mast cells (MCs) produce a variety of mediators, including proteases-tryptase, chymase, and carboxypeptidases-which are important for the immune response. However, a detailed assessment of the mechanisms of biogenesis and excretion of proteases in melanoma has yet to be carried out. In this study, we present data on phenotype and secretory pathways of proteases in MCs in the course of melanoma. The development of melanoma was found to be accompanied by the appearance in the tumor-associated MC population of several pools with a predominant content of one or two specific proteases with a low content or complete absence of others. Elucidation of the molecular and morphological features of the expression of MC proteases in melanoma allows us a fresh perspective of the pathogenesis of the disease, and can be used to clarify MCs classification, the disease prognosis, and evaluate the effectiveness of ongoing antitumor therapy.


Subject(s)
Mast Cells , Melanoma , Carboxypeptidases , Chymases/metabolism , Humans , Mast Cells/metabolism , Melanoma/pathology , Peptide Hydrolases , Tryptases/metabolism
11.
Int J Mol Sci ; 23(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35563079

ABSTRACT

Reversible protein phosphorylation is a posttranslational modification of regulatory proteins involved in cardiac signaling pathways. Here, we focus on the role of protein phosphatase 2A (PP2A) for cardiac gene expression and stress response using a transgenic mouse model with cardiac myocyte-specific overexpression of the catalytic subunit of PP2A (PP2A-TG). Gene and protein expression were assessed under basal conditions by gene chip analysis and Western blotting. Some cardiac genes related to the cell metabolism and to protein phosphorylation such as kinases and phosphatases were altered in PP2A-TG compared to wild type mice (WT). As cardiac stressors, a lipopolysaccharide (LPS)-induced sepsis in vivo and a global cardiac ischemia in vitro (stop-flow isolated perfused heart model) were examined. Whereas the basal cardiac function was reduced in PP2A-TG as studied by echocardiography or as studied in the isolated work-performing heart, the acute LPS- or ischemia-induced cardiac dysfunction deteriorated less in PP2A-TG compared to WT. From the data, we conclude that increased PP2A activity may influence the acute stress tolerance of cardiac myocytes.


Subject(s)
Ischemia , Myocytes, Cardiac , Protein Phosphatase 2 , Sepsis , Animals , Heart Function Tests , Ischemia/metabolism , Lipopolysaccharides/metabolism , Mice , Myocytes, Cardiac/metabolism , Phosphorylation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Protein Processing, Post-Translational , Sepsis/metabolism
12.
Histochem Cell Biol ; 155(5): 561-580, 2021 May.
Article in English | MEDLINE | ID: mdl-33492488

ABSTRACT

Mast cells (MC) are immune cells that produce a variety of mediators, such as proteases, that are important in the body's immune responses. MC proteases have pronounced multifunctionality and in many respects determine the biological characteristics of the organ-specific MC population. Although, increased numbers of MC are one of the objective mastocytosis signs, a detailed assessment of the proteases biogenesis and excretion mechanisms in the bone marrow (BM) has not yet been carried out. Here, we performed an analysis of the expression of proteases in patients with various forms of systemic mastocytosis. We presented data on intracellular protease co-localization in human BM MCs and discussed their implication in secretory pathways of MCs in the development of the disease. Systemic mastocytosis, depending on the course, is featured by the formation of definite profiles of specific proteases in various forms of atypical mast cells. Intragranular accumulation of tryptase, chymase and carboxypeptidases in the hypochromic phenotype of atypical mast cells is characterized. Characterization of MC proteases expression during mastocytosis can be used to refine the MC classification, help in a prognosis, and increase the effectiveness of targeted therapy.


Subject(s)
Bone Marrow/metabolism , Mast Cells/metabolism , Mastocytosis, Systemic/metabolism , Peptide Hydrolases/metabolism , Bone Marrow/pathology , Fluorescence Polarization Immunoassay , Humans , Mast Cells/pathology , Mastocytosis, Systemic/diagnosis
13.
Am J Dermatopathol ; 43(2): 93-102, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32568835

ABSTRACT

ABSTRACT: Extraocular sebaceous carcinoma (ESC) is a rare appendiceal skin tumor. In contrast to ocular sebaceous carcinoma, information about the exact cellular architecture of these lesions is scarce and the histogenesis of ESC is unknown. Here, we extend our previous study and investigate 28 extraocular carcinomas in comparison to 54 benign sebaceous tumors and 8 cases of normal sebaceous glands using a broad spectrum of antibodies against p63, several keratins, adipophilin, EMA, Ki67, androgen receptor, and mismatch repair proteins. This observational study demonstrates that p63- and K5/14-positive basaloid cells are key cells in normal sebaceous gland and in all sebaceous tumors and that these basaloid cells give rise to EMA+, adipophilin+ sebocytes, and K5/14+, K7±, K10± ductal structures. Finally, about half of ESC is associated with superficial in situ neoplasia, which provides evidence that at least part of these carcinomas arises from flat superficial in situ carcinoma. In contrast to the normal sebaceous gland, about half of all sebaceous tumors lack keratin K7. MMR protein IHC-profiles role will be discussed.


Subject(s)
Adenoma/chemistry , Biomarkers, Tumor/analysis , Carcinoma/chemistry , Immunohistochemistry , Sebaceous Gland Neoplasms/chemistry , Adenoma/pathology , Adult , Aged , Aged, 80 and over , Biopsy , Carcinoma/pathology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Sebaceous Gland Neoplasms/pathology
14.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502355

ABSTRACT

As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated transgenic mice with cardiac muscle cell-specific overexpression of PP2Acα (PP2A) and PP5 (PP5). For further studies we crossbred PP2A and PP5 mice to obtain PP2AxPP5 double transgenic mice (PP2AxPP5, DT) and compared them with littermate wild-type mice (WT) serving as a control. The mortality of DT mice was greatly enhanced vs. other genotypes. Cardiac fibrosis was noted histologically and mRNA levels of collagen 1α, collagen 3α and fibronectin 1 were augmented in DT. DT and PP2A mice exhibited an increase in relative heart weight. The ejection fraction (EF) was reduced in PP2A and DT but while the EF of PP2A was nearly normalized after ß-adrenergic stimulation by isoproterenol, it was almost unchanged in DT. Moreover, left atrial preparations from DT were less sensitive to isoproterenol treatment both under normoxic conditions and after hypoxia. In addition, levels of the hypertrophy markers atrial natriuretic peptide and B-type natriuretic peptide as well as the inflammation markers interleukin 6 and nuclear factor kappa B were increased in DT. PP2A enzyme activity was enhanced in PP2A vs. WT but similar to DT. This was accompanied by a reduced phosphorylation state of phospholamban at serine-16. Fittingly, the relaxation times in left atria from DT were prolonged. In summary, cardiac co-overexpression of PP2A and PP5 were detrimental to animal survival and cardiac function, and the mechanism may involve dephosphorylation of important regulatory proteins but also fibrosis and inflammation.


Subject(s)
Glycoproteins/metabolism , Protein Phosphatase 2C/metabolism , Systole/physiology , Animals , Cardiomyopathies/metabolism , Fibrosis/metabolism , Heart Diseases/metabolism , Humans , Male , Mice , Mice, Transgenic , Myocardial Contraction/physiology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Phosphorylation , Serine Proteinase Inhibitors/metabolism , Systole/genetics
15.
Histochem Cell Biol ; 154(1): 21-40, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32222902

ABSTRACT

This article presents 20 combinations of histochemical stainings for the determination of mast cell co-localization with the fibrous component of the connective tissue in the fibrillogenesis course. Best results were obtained using metachromatic detection of mast cells in combination with silver or picro-fuchsin impregnation, staining with brilliant green using van Gieson staining, and a combination of aniline blue staining with neutral red. Proposed variants of histochemical protocols open up new opportunities to analyze the participation of mast cells in extracellular matrix remodeling of the tissue microenvironment in the course of adaptive and pathological processes. Results obtained expand the current theoretical views of the process of fibrillogenesis in the extracellular matrix. They also shed new light on the participation of mast cell secretion components in the molecular mechanisms of fiber formation.


Subject(s)
Collagen/chemistry , Extracellular Matrix/chemistry , Mast Cells/chemistry , Neck Muscles/chemistry , Animals , Coloring Agents/chemistry , Mast Cells/cytology , Rats , Rats, Wistar , Silver/chemistry , Staining and Labeling , Tolonium Chloride/chemistry
16.
Histochem Cell Biol ; 154(1): 97-105, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32170368

ABSTRACT

Adenosquamous carcinoma of the pancreas (ASCAP) is characterized by conventional pancreatic ductal adenocarcinoma (PDAC) and squamous carcinoma components with at least 30% of the tumour showing squamous differentiation. To get further insight into the histogenesis of these lesions, we analysed the cellular organization of ASCAP compared to PDACs. Using Immunohistochemistry and triple immunofluorescence labelling studies for keratins, p63, p40, MUC1, MUC2, MUC5AC, Ki67, and EGFR we demonstrate that many ASCAPs contain a transitional zone between the K8/18-positive adenocarcinomatous component and the p63+ /p40+ /K5/K14+ squamous component initiated by the expression of p63 in K8/18+ adenocarcinomatous cells and the appearance of basally located p63+ K5/14+ cells. p63+ K5/14+ cells give rise to fully developed squamous differentiation. Notably, 25% of conventional PDACs without histologically recognizable squamous component contain foci of p63+ p40+ and K5/14+ cells similar to the transitional zone. Our data provide evidence that the squamous carcinoma components of ASCAPs originate from pre-existing PDAC via transdifferentiation of keratin K8/18-positive glandular cells to p63-, p40-, and keratin K5/14-positive squamous carcinoma cells supporting the squamous metaplasia hypothesis. Thus our findings provide new evidence about the cellular process behind squamous differentiation in ASCAPs.


Subject(s)
Carcinoma, Adenosquamous/pathology , Carcinoma, Squamous Cell/pathology , Pancreatic Neoplasms/pathology , Aged , Aged, 80 and over , Carcinoma, Adenosquamous/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Differentiation , Female , Humans , Keratins/metabolism , Male , Middle Aged , Pancreatic Neoplasms/metabolism
17.
Histochem Cell Biol ; 152(4): 253-269, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31392409

ABSTRACT

During degranulation, mast cells secrete a specific set of mediators defined as "secretome" including the preformed mediators that have already been synthesized by a cell and contained in the cytoplasmic granules. This group includes serine proteases, in particular, chymase and tryptase. Biological significance of chymase depends on the mechanisms of degranulation and is characterized by selective effects on the cellular and non-cellular components of the specific tissue microenvironment. Chymase is known to be closely involved in the mechanisms of inflammation and allergy, angiogenesis, and oncogenesis, remodeling of the extracellular matrix of the connective tissue and changes in organ histoarchitectonics. Number of chymase-positive mast cells in the intra-organ population, and the mechanisms of biogenesis and secretome degranulation appear to be the informative criteria for interpreting the state of the internal organs, characterizing not only the diagnostic efficacy but also the properties of targets of pharmacotherapy. In this review, we discussed the current state of knowledge about mast cell chymase as one of the mast cell secretome proteases. Main issues of the reviewed publications are highlighted with our microscopic images of mast cell chymase visualized using immunohistochemical staining.


Subject(s)
Chymases/metabolism , Mast Cells/enzymology , Animals , Chymases/analysis , Cytoplasmic Granules/chemistry , Cytoplasmic Granules/metabolism , Humans , Immunohistochemistry , Mast Cells/metabolism
18.
Lab Invest ; 98(8): 1065-1075, 2018 08.
Article in English | MEDLINE | ID: mdl-29743728

ABSTRACT

Understanding the mechanisms regulating human mammary epithelium requires knowledge of the cellular constituents of this tissue. Different and partially contradictory definitions and concepts describing the cellular hierarchy of mammary epithelium have been proposed, including our studies of keratins K5 and/or K14 as markers of progenitor cells. Furthermore, we and others have suggested that the p53 homolog p63 is a marker of human breast epithelial stem cells. In this investigation, we expand our previous studies by testing whether immunohistochemical staining with monospecific anti-keratin antibodies in combination with an antibody against the stem cell marker p63 might help refine the different morphologic phenotypes in normal breast epithelium. We used in situ multilabel staining for p63, different keratins, the myoepithelial marker smooth muscle actin (SMA), the estrogen receptor (ER), and Ki67 to dissect and quantify the cellular components of 16 normal pre- and postmenopausal human breast epithelial tissue samples at the single-cell level. Importantly, we confirm the existence of K5+ only cells and suggest that they, in contrast to the current view, are key luminal precursor cells from which K8/18+ progeny cells evolve. These cells are further modified by the expression of ER and Ki67. We have also identified a population of p63+K5+ cells that are only found in nipple ducts. Based on our findings, we propose a new concept of the cellular hierarchy of human breast epithelium, including K5 luminal lineage progenitors throughout the ductal-lobular axis and p63+K5+ progenitors confined to the nipple ducts.


Subject(s)
Breast/metabolism , Epithelium/metabolism , Keratin-14/metabolism , Keratin-5/metabolism , Stem Cells/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Female , Humans , Immunohistochemistry , Middle Aged
19.
Histochem Cell Biol ; 149(2): 169-177, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29197996

ABSTRACT

Endogenous cell autofluorescence is a common nuisance that complicates the use of fluorescence microscopy. When using fluorescence-labeled antibodies for specific cell labeling in tissue sections of human angioimmunoblastic T-cell lymphoma (AITL), we encountered with a problematic autofluorescence of multiple cells. These cells emitted fluorescence signals in the green, red and deep-red spectral range. Characterization of these autofluorescent cells solely on the basis of their autofluorescence failed. To identify these enigmatic cells residing the lymphoma tissue, we combined two imaging techniques-fluorescence and brightfield microscopy. Combined fluorescence/brightfield imaging of cells immunolabeled with a panel of CD antibodies raised against diverse cellular components allowed us to identify the autofluorescent cells in the AITL as eosinophils. These cells tended to accumulate in the vicinity of capillaries and arterioles apparently mediating the process of angiogenesis resembling other angiogenesis-associated diseases.


Subject(s)
Fluorescence , Fluorescent Antibody Technique , Immunoblastic Lymphadenopathy/pathology , Lymphoma, T-Cell/pathology , Aged , Aged, 80 and over , Female , Humans , Immunohistochemistry , Male , Middle Aged
20.
Histochem Cell Biol ; 149(5): 461-477, 2018 May.
Article in English | MEDLINE | ID: mdl-29532158

ABSTRACT

Mast cells are haematopoietic cells that arise from pluripotent precursors of the bone marrow. They play immunomodulatory roles in both health and disease. When appropriately activated, mast cells undergo degranulation, and preformed granule compounds are rapidly released into the surroundings. In many cases, the effects that mast cells have on various inflammatory settings are closely associated with the enzymatic characteristics of tryptase, the main granule compound of mast cells. Tryptase degranulation is often linked with the development of an immune response, allergy, inflammation, and remodelling of tissue architecture. Tryptase also represents an informative diagnostic marker of certain diseases and a prospective target for pharmacotherapy. In this review, we discuss the current knowledge about mast cell tryptase as one of the mast cell secretome proteases. The main points of the reviewed publications are highlighted with our microscopic images of mast cell tryptases visualized using immunohistochemical staining.


Subject(s)
Mast Cells/enzymology , Tryptases/metabolism , Animals , Humans , Immunohistochemistry , Inflammation/metabolism , Mast Cells/cytology , Mast Cells/metabolism , Tryptases/immunology
SELECTION OF CITATIONS
SEARCH DETAIL