Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834984

ABSTRACT

The ongoing pandemic of COVID-19 has caused more than 6.7 million tragic deaths, plus, a large percentage of people who survived it present a myriad of chronic symptoms that last for at least 6 months; this has been named as long COVID. Some of the most prevalent are painful symptoms like headache, joint pain, migraine, neuropathic-like pain, fatigue and myalgia. MicroRNAs are small non-coding RNAs that regulate genes, and their involvement in several pathologies has been extensively shown. A deregulation of miRNAs has been observed in patients with COVID-19. The objective of the present systematic review was to show the prevalence of chronic pain-like symptoms of patients with long COVID and based on the expression of miRNAs in patients with COVID-19, and to present a proposal on how they may be involved in the pathogenic mechanisms of chronic pain-like symptoms. A systematic review was carried out in online databases for original articles published between March 2020 to April 2022; the systematic review followed the PRISMA guidelines, and it was registered in PROSPERO with registration number CRD42022318992. A total of 22 articles were included for the evaluation of miRNAs and 20 regarding long COVID; the overall prevalence of pain-like symptoms was around 10 to 87%, plus, the miRNAs that were commonly up and downregulated were miR-21-5p, miR-29a,b,c-3p miR-92a,b-3p, miR-92b-5p, miR-126-3p, miR-150-5p, miR-155-5p, miR-200a, c-3p, miR-320a,b,c,d,e-3p, and miR-451a. The molecular pathways that we hypothesized to be modulated by these miRNAs are the IL-6/STAT3 proinflammatory axis and the compromise of the blood-nerve barrier; these two mechanisms could be associated with the prevalence of fatigue and chronic pain in the long COVID population, plus they could be novel pharmacological targets in order to reduce and prevent these symptoms.


Subject(s)
COVID-19 , Chronic Pain , MicroRNAs , Post-Acute COVID-19 Syndrome , Humans , Chronic Pain/genetics , COVID-19/complications , COVID-19/genetics , MicroRNAs/genetics , Post-Acute COVID-19 Syndrome/genetics
2.
Neurochem Res ; 46(12): 3179-3189, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34387812

ABSTRACT

Brain injury leads to an excitatory phase followed by an inhibitory phase in the brain. The clinical sequelae caused by cerebral injury seem to be a response to remote functional inhibition of cerebral nuclei located far from the motor cortex but anatomically related to the injury site. It appears that such functional inhibition is mediated by an increase in lipid peroxidation (LP). To test this hypothesis, we report data from 80 rats that were allocated to the following groups: the sham group (n = 40), in which rats received an intracortical infusion of artificial cerebrospinal fluid (CSF); the injury group (n = 20), in which rats received CSF containing ferrous chloride (FeCl2, 50 mM); and the recovery group (n = 20), in which rats were injured and allowed to recover. Beam-walking, sensorimotor and spontaneous motor activity tests were performed to evaluate motor performance after injury. Lipid fluorescent products (LFPs) were measured in the pons. The total pontine contents of glutamate (GLU), glutamine (GLN) and gamma-aminobutyric acid (GABA) were also measured. In injured rats, the motor deficits, LFPs and total GABA and GLN contents in the pons were increased, while the GLU level was decreased. In contrast, in recovering rats, none of the studied variables were significantly different from those in sham rats. Thus, motor impairment after cortical injury seems to be mediated by an inhibitory pontine response, and functional recovery may result from a pontine restoration of the GLN-GLU-GABA cycle, while LP may be a primary mechanism leading to remote pontine inhibition after cortical injury.


Subject(s)
Brain Injuries/physiopathology , Glutamic Acid/metabolism , Glutamine/metabolism , Motor Cortex/physiology , Pons/metabolism , Recovery of Function , gamma-Aminobutyric Acid/metabolism , Animals , Lipid Peroxidation , Male , Motor Disorders/physiopathology , Oxidative Stress , Rats , Rats, Wistar
3.
Metab Brain Dis ; 33(1): 99-105, 2018 02.
Article in English | MEDLINE | ID: mdl-29052075

ABSTRACT

Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D1 receptors (D1Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D1Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D1R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D1R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D1R agonist to prevent and reverse the effect of the D1R antagonist in beam-walking scores is an indicator that the function of D1Rs is necessary to maintain motor coordination and balance in rats. Our results support that D1Rs mediate the SCH-23390-induced deficit in motor coordination.


Subject(s)
Corpus Striatum/drug effects , Dopamine Agonists/pharmacology , Motor Activity/drug effects , Parkinson Disease/drug therapy , Receptors, Dopamine D1/drug effects , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Benzazepines/pharmacology , Male , Postural Balance/drug effects , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
4.
Neurochem Res ; 41(12): 3261-3271, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27639395

ABSTRACT

Nowadays, a consensus has been reached that designates the functional and structural reorganization of synapses as the primary mechanisms underlying the process of recovery from brain injury. We have reported that pontine noradrenaline (NA) is increased in animals after cortical ablation (CA). The aim of the present study was to explore the noradrenergic and morphological response after sensorimotor intervention (SMI) in rats injured in the motor cortex. We used male Wistar adult rats allocated in four conditions: sham-operated, injured by cortical ablation, sham-operated with SMI and injured by cortical ablation with SMI. Motor and somatosensory performance was evaluated prior to and 20 days after surgery. During the intervening period, a 15-session, SMI program was implemented. Subsequently, total NA analysis in the pons and dentate gyrus (DG) was performed. All groups underwent histological analysis. Our results showed that NA content in the DG was reduced in the injured group versus control, and this reduction was reverted in the injured group that underwent SMI. Moreover, injured rats showed reduction in the number of granule cells in the DG and decreased dentate granule cell layer thickness. Notably, after SMI, the loss of granule cells was reverted. Locus coeruleus showed turgid cells in the injured rats. These results suggest that SMI elicits biochemical and structural modifications in the hippocampus that could reorganize the system and lead the recovery process, modulating structural and functional plasticity.


Subject(s)
Brain Injuries/metabolism , Dentate Gyrus/metabolism , Motor Activity , Motor Cortex/physiopathology , Norepinephrine/metabolism , Proprioception , Animals , Brain Injuries/pathology , Brain Injuries/physiopathology , Brain Injuries/psychology , Dentate Gyrus/pathology , Male , Movement , Rats, Wistar
5.
Neurochem Res ; 40(7): 1431-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25981954

ABSTRACT

The striatum is known to possess high levels of D1-like and D2-like receptors (D1Rs and D2Rs, respectively). We have previously shown that selective inhibition of D1Rs increases the dopaminergic metabolic response and proposed that this effect is associated with the concomitant activation of postsynaptic D2Rs by endogenous dopamine (DA). Here, we examined whether activation of D2Rs modulates the metabolism and synthesis of DA in the striatum. We used male Wistar rats to evaluate the effects of the systemic administration of a D2R agonist (bromocriptine), a D1R antagonist (SCH-23390), and the co-administration of these compounds with pargyline on the inhibition of monoamine oxidase. DA and L-3,4-dihidroxyphenylacetic acid (DOPAC) levels and 3,4-dihydroxy-L-phenylalanine (L-DOPA) content were measured using high performance liquid chromatography. The systemic administration of SCH-23390 alone, at 0.25, 0.5, 1 or 2 mg/kg, significantly (P < 0.05) increased DOPAC levels and the DOPAC/DA ratio. At 2, 4 and 8 mg/kg, the administration of bromocriptine alone significantly (P < 0.05) decreased DOPAC levels, L-DOPA content and the DOPAC/DA ratio, whereas at 2 mg/kg, it decreased DA levels. In both groups, co-administration of either SCH-23390 or bromocriptine with pargyline decreased DOPAC levels and the DOPAC/DA ratio by approximately 70 % compared to the levels observed in the control groups. In conclusion, administration of the D2R agonist bromocriptine decreased dopaminergic synthesis and metabolism in the striatum; in contrast, administration of the D1R antagonist SCH-23390 induced the opposite effects.


Subject(s)
Corpus Striatum/drug effects , Dopamine Agonists/pharmacology , Dopamine/metabolism , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/agonists , Animals , Corpus Striatum/metabolism , Male , Rats , Rats, Wistar
6.
Psychopharmacology (Berl) ; 240(6): 1221-1234, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37086286

ABSTRACT

RATIONALE: Dyskinesias induced by L-3,4-dihydroxyphenylalanine, L-Dopa (LIDs), are the major complication in the pharmacological treatment of Parkinson's disease. LIDs induce overactivity of the glutamatergic cortico-striatal projections, and drugs that reduce glutamatergic overactivity exert antidyskinetic actions. Chronic administration of immepip, agonist at histamine H3 receptors (H3R), reduces LIDs and diminishes GABA and glutamate content in striatal dialysates (Avila-Luna et al., Psychopharmacology 236: 1937-1948, 2019). OBJECTIVES AND METHODS: In rats unilaterally lesioned with 6-hydroxydopamine in the substantia nigra pars compacta (SNc), we examined whether the chronic administration of immepip and their withdrawal modify LIDs, the effect of L-Dopa on glutamate and GABA content, and mRNA levels of dopamine D1 receptors (D1Rs) and H3Rs in the cerebral cortex and striatum. RESULTS: The administration of L-Dopa for 21 days induced LIDs. This effect was accompanied by increased GABA and glutamate levels in the cerebral cortex ipsi and contralateral to the lesioned SNc, and immepip administration prevented (GABA) or reduced (glutamate) these actions. In the striatum, GABA content increased in the ipsilateral nucleus, an effect prevented by immepip. L-Dopa administration had no significant effects on striatal glutamate levels. In lesioned and L-Dopa-treated animals, D1R mRNA decreased in the ipsilateral striatum, an effect prevented by immepip administration. CONCLUSIONS: Our results indicate that chronic H3R activation reduces LIDs and the overactivity of glutamatergic cortico-striatal projections, providing further evidence for an interaction between D1Rs and H3Rs in the cortex and striatum under normal and pathological conditions.


Subject(s)
Dyskinesia, Drug-Induced , Levodopa , Rats , Male , Animals , Levodopa/adverse effects , Dopamine/metabolism , Oxidopamine/toxicity , Glutamic Acid/metabolism , Corpus Striatum , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/metabolism , gamma-Aminobutyric Acid/metabolism , Cerebral Cortex/metabolism , RNA, Messenger/metabolism
7.
Neural Regen Res ; 18(4): 875-880, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36204857

ABSTRACT

Norepinephrine plays an important role in motor functional recovery after a brain injury caused by ferrous chloride. Inhibition of norepinephrine release by clonidine is correlated with motor deficits after motor cortex injury. The aim of this study was to analyze the role of α2-adrenergic receptors in the restoration of motor deficits in recovering rats after brain damage. The rats were randomly assigned to the sham and injury groups and then treated with the following pharmacological agents at 3 hours before and 8 hours, 3 days, and 20 days after ferrous chloride-induced cortical injury: saline, clonidine, efaroxan (a selective antagonist of α2-adrenergic receptors) and clonidine + efaroxan. The sensorimotor score, the immunohistochemical staining for α2A-adrenergic receptors, and norepinephrine levels were evaluated. Eight hours post-injury, the sensorimotor score and norepinephrine levels in the locus coeruleus of the injured rats decreased, and these effects were maintained 3 days post-injury. However, 20 days later, clonidine administration diminished norepinephrine levels in the pons compared with the sham group. This effect was accompanied by sensorimotor deficits. These effects were blocked by efaroxan. In conclusion, an increase in α2-adrenergic receptor levels was observed after injury. Clonidine restores motor deficits in rats recovering from cortical injury, an effect that was prevented by efaroxan. The underlying mechanisms involve the stimulation of hypersensitive α2-adrenergic receptors and inhibition of norepinephrine activity in the locus coeruleus. The results of this study suggest that α2 receptor agonists might restore deficits or impede rehabilitation in patients with brain injury, and therefore pharmacological therapies need to be prescribed cautiously to these patients.

8.
Front Neurosci ; 17: 1304440, 2023.
Article in English | MEDLINE | ID: mdl-38144211

ABSTRACT

The brain cortex is the structure that is typically injured in traumatic brain injury (TBI) and is anatomically connected with other brain regions, including the striatum and hypothalamus, which are associated in part with motor function and the regulation of body temperature, respectively. We investigated whether a TBI extending to the striatum could affect peripheral and core temperatures as an indicator of autonomic thermoregulatory function. Moreover, it is unknown whether thermal modulation is accompanied by hypothalamic and cortical monoamine changes in rats with motor function recovery. The animals were allocated into three groups: the sham group (sham), a TBI group with a cortical contusion alone (TBI alone), and a TBI group with an injury extending to the dorsal striatum (TBI + striatal injury). Body temperature and motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, rats were euthanized to measure the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) levels using high-performance liquid chromatography (HPLC). We observed that TBI with an injury extending to the dorsal striatum increased core and peripheral temperatures. These changes were accompanied by a sustained motor deficit lasting for 14 days. Furthermore, there were notable increases in NA and 5-HT levels in the brain cortex and hypothalamus both 3 and 20 days after injury. In contrast, rats with TBI alone showed no changes in peripheral temperatures and achieved motor function recovery by the 7th day post-injury. In conclusion, our results suggest that TBI with an injury extending to the dorsal striatum elevates both core and peripheral temperatures, causing a delay in functional recovery and increasing hypothalamic monoamine levels. The aftereffects can be attributed to the injury site and changes to the autonomic thermoregulatory functions.

9.
Metab Brain Dis ; 26(3): 213-20, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21789566

ABSTRACT

The aim of this work was to analyze the effect of oxcarbazepine (OXC) on sleep patterns, "head and body shakes" and monoamine neurotransmitters level in a model of kainic-induced seizures. Adult Wistar rats were administered kainic acid (KA), OXC or OXC + KA. A polysomnographic study showed that KA induced animals to stay awake for the whole initial 10 h. OXC administration 30 min prior to KA diminished the effect of KA on the sleep parameters. As a measure of the effects of the drug treatments on behavior, head and body shakes were visually recorded for 4 h after administration of KA, OXC + KA or saline. The presence of OXC diminished the shakes frequency. 4 h after drug application, the hippocampus was dissected out, and the content of monoamines was analyzed. The presence of OXC still more increased serotonin, 5-hidroxyindole acetic acid, dopamine, and homovanilic acid, induced by KA.


Subject(s)
Carbamazepine/analogs & derivatives , Dopamine/metabolism , Hippocampus/drug effects , Seizures/drug therapy , Serotonin/metabolism , Sleep Stages/drug effects , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/therapeutic use , Carbamazepine/administration & dosage , Carbamazepine/therapeutic use , Disease Models, Animal , Homovanillic Acid/metabolism , Hydroxyindoleacetic Acid/metabolism , Kainic Acid/adverse effects , Male , Oxcarbazepine , Rats , Rats, Wistar , Seizures/chemically induced
10.
Front Neurosci ; 15: 693404, 2021.
Article in English | MEDLINE | ID: mdl-34248494

ABSTRACT

Disabilities are estimated to occur in approximately 2% of survivors of traumatic brain injury (TBI) worldwide, and disability may persist even decades after brain injury. Facilitation or modulation of functional recovery is an important goal of rehabilitation in all patients who survive severe TBI. However, this recovery tends to vary among patients because it is affected by the biological and physical characteristics of the patients; the types, doses, and application regimens of the drugs used; and clinical indications. In clinical practice, diverse dopaminergic drugs with various dosing and application procedures are used for TBI. Previous studies have shown that dopamine (DA) neurotransmission is disrupted following moderate to severe TBI and have reported beneficial effects of drugs that affect the dopaminergic system. However, the mechanisms of action of dopaminergic drugs have not been completely clarified, partly because dopaminergic receptor activation can lead to restoration of the pathway of the corticobasal ganglia after injury in brain structures with high densities of these receptors. This review aims to provide an overview of the functionality of the dopaminergic system in the striatum and its roles in functional recovery or rehabilitation after TBI.

11.
Animals (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34944225

ABSTRACT

Evaluating laboratory animals' health and thermostability are fundamental components of all experimental designs. Alterations in either one of these parameters have been shown to trigger physiological changes that can compromise the welfare of the species and the replicability and robustness of the results obtained. Due to the nature and complexity of evaluating and managing the species involved in research protocols, non-invasive tools such as infrared thermography (IRT) have been adopted to quantify these parameters without altering them or inducing stress responses in the animals. IRT technology makes it possible to quantify changes in surface temperatures that are derived from alterations in blood flow that can result from inflammatory, stressful, or pathological processes; changes can be measured in diverse regions, called thermal windows, according to their specific characteristics. The principal body regions that were employed for this purpose in laboratory animals were the orbital zone (regio orbitalis), auricular pavilion (regio auricularis), tail (cauda), and the interscapular area (regio scapularis). However, depending on the species and certain external factors, the sensitivity and specificity of these windows are still subject to controversy due to contradictory results published in the available literature. For these reasons, the objectives of the present review are to discuss the neurophysiological mechanisms involved in vasomotor responses and thermogenesis via BAT in laboratory animals and to evaluate the scientific usefulness of IRT and the thermal windows that are currently used in research involving laboratory animals.

12.
Neurochem Res ; 35(10): 1538-45, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20535555

ABSTRACT

The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum.


Subject(s)
Cerebellum/metabolism , Gait , Lipid Peroxidation , Motor Activity , Nerve Degeneration/metabolism , Pons/metabolism , Serotonin/metabolism , Animals , Ferrous Compounds , Male , Nerve Degeneration/chemically induced , Nerve Degeneration/physiopathology , Nerve Degeneration/psychology , Rats , Rats, Wistar
13.
Metab Brain Dis ; 25(2): 235-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20424901

ABSTRACT

Iron chloride injections into the rat SNc can cause chronic decreases in striatal dopamine (DA) levels. However, changes in striatal DA content after iron-dextran injection into rat SNc have not been completely elucidated. The aim of this work was to measure striatal DA concentrations after iron-dextran injection into the SNc. We divided 40 male Wistar rats into five groups, including control, saline injected then sacrificed 7 days or 30 days later, and iron-dextran injected then sacrificed 7 days or 30 days later. Striatal DA content was measured in control animals and in all animals sacrificed 7 days or 30 days after injection, and motor performance was assessed in iron-dextran and saline injected groups 30 days after injection. The striatal DA levels were determined using HPLC. There were significant (P < 0.05) decreases in DA concentrations in the striatum ipsilateral to the injection site in the iron-dextran treated rats compared to control and saline-injected rats. There were no significant differences in DA concentration between the sham-operated (i.e., saline-injected) and control rats. We also observed motor deficits in the iron-dextran injected rats. The striatal DA reduction observed after iron-dextran injection may be attributable to iron-induced oxidative injury in the SNc. Motor deficits, in turn, may be explained by subsequent disturbances in striatal and cortical dopaminergic neuromodulation.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Down-Regulation/drug effects , Iron-Dextran Complex/toxicity , Motor Activity/drug effects , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Substantia Nigra/drug effects , Animals , Disease Models, Animal , Dopamine/physiology , Down-Regulation/physiology , Hematinics/therapeutic use , Hematinics/toxicity , Iron-Dextran Complex/therapeutic use , Male , Motor Activity/physiology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Rats
14.
Psychopharmacology (Berl) ; 236(7): 2211-2222, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30859334

ABSTRACT

RATIONALE: The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function, which may be modulated by dopamine. OBJECTIVES: We studied whether the activation of dopamine D1 receptors (D1Rs) modulates the γ-aminobutyric acid (GABA) and glutamate levels in the striatum of recovered rats at 192 h after cortical injury. METHODS: The D1R agonist SKF-38393 (0, 2, 3, or 4 mg/kg) was administered at 24, 48, 96, and 192 h post-injury, and then rats were decapitated to determine GABA and glutamate levels and the levels of D1R mRNA on both sides of the striatum. RESULTS: GABAergic imbalance in the striatum contralateral to the injury site was normalized by the administration of the D1R agonist, but this treatment did not produce a significant effect on glutamate levels, suggesting that glutamate was metabolized into GABA. The administration of SKF-38393 (2 mg/kg) decreased the levels of D1R mRNA in the striatum contralateral to the injury, and this effect was blocked by the coadministration of the D1R antagonist SCH-23390 (2 mg/kg). In the striatum ipsilateral to the injury, the D1R agonist increased the D1R mRNA levels, an effect that was blocked by SCH-23390. CONCLUSION: The reversal of the GABAergic imbalance in the striatum contralateral to the cortical injury can be modulated by extrastriatal D1R activation, and the D1R agonist-induced increases in the D1R mRNA levels in the striatum ipsilateral to the injury suggest that the striatum may be necessary to achieve functional recovery.


Subject(s)
Corpus Striatum/metabolism , Receptors, Dopamine D1/metabolism , Recovery of Function/physiology , Sensorimotor Cortex/injuries , Sensorimotor Cortex/metabolism , gamma-Aminobutyric Acid/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Benzazepines/pharmacology , Corpus Striatum/drug effects , Dopamine/metabolism , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Male , Neostriatum/drug effects , Neostriatum/metabolism , Rats , Rats, Wistar , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors , Recovery of Function/drug effects , Sensorimotor Cortex/drug effects
15.
Psychopharmacology (Berl) ; 236(6): 1937-1948, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30762089

ABSTRACT

RATIONALE: Histamine H3 receptors (H3Rs) are co-expressed with dopamine D1 receptors (D1Rs) by striato-nigral medium spiny GABAergic neurons, where they functionally antagonize D1R-mediated responses. OBJECTIVES AND METHODS: We examined whether the chronic administration of the H3R agonist immepip modifies dyskinesias induced by L-3,4-dihydroxyphenylalanine, L-Dopa (LIDs), in rats lesioned with 6-hydroxydopamine in the substantia nigra pars compacta, and the effect of D1R and H3R co-activation on glutamate and GABA content in dialysates from the dorsal striatum of naïve rats. RESULTS: The systemic administration (i.p.) of L-Dopa for 14 days significantly increased axial, limb, and orolingual abnormal involuntary movements (AIMs) compared with the vehicle group. The chronic administration of the H3R agonist immepip alongside L-Dopa significantly decreased axial, limb, and orolingual AIMs compared with L-Dopa alone, but AIMs returned to previous values on immepip withdrawal. Chronic immepip was ineffective when administered prior to L-Dopa. The chronic administration of immepip significantly decreased GABA and glutamate content in striatal dialysates, whereas the administration of L-Dopa alone increased GABA and glutamate content. CONCLUSIONS: These results indicate that chronic H3R activation reduces LIDs, and the effects on striatal GABA and glutamate release provide evidence for a functional interaction between D1Rs and H3Rs.


Subject(s)
Dyskinesia, Drug-Induced/drug therapy , Histamine Agonists/administration & dosage , Imidazoles/administration & dosage , Levodopa/toxicity , Oxidopamine/toxicity , Piperidines/administration & dosage , Receptors, Histamine H3/physiology , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dyskinesia, Drug-Induced/metabolism , Male , Rats , Rats, Wistar , Substantia Nigra/drug effects , Substantia Nigra/metabolism
16.
Front Neurosci ; 13: 360, 2019.
Article in English | MEDLINE | ID: mdl-31040765

ABSTRACT

The dopaminergic and histaminergic systems are the first to appear during the development of the nervous system. Through the activation of H1 receptors (H1Rs), histamine increases neurogenesis of the cortical deep layers, while reducing the dopaminergic phenotype (cells immunoreactive to tyrosine hydroxylase, TH+) in embryo ventral mesencephalon. Although the function of histamine in neuronal differentiation has been studied, the role of H1Rs in neurogenesis has not been addressed. For this purpose, the H1R antagonist/inverse agonist chlorpheniramine was systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats (gestational days 12-14, E12-14), and control and experimental embryos (E14 and E16) and pups (21-day-old) were evaluated for changes in nigro-striatal development. Western blot and immunohistochemistry determinations showed a significant increase in the dopaminergic markers' TH and PITX3 in embryos from chlorpheniramine-treated rats at E16. Unexpectedly, 21-day-old pups from the chlorpheniramine-treated group, showed a significant reduction in TH immunoreactivity in the substantia nigra pars compacta and dorsal striatum. Furthermore, striatal dopamine content, evoked [3H]-dopamine release and methamphetamine-stimulated motor activity were significantly lower compared to the control group. These results indicate that H1R blockade at E14-E16 favors the differentiation of dopaminergic neurons, but hampers their migration, leading to a decrease in dopaminergic innervation of the striatum in post-natal life.

17.
Article in English | MEDLINE | ID: mdl-31108178

ABSTRACT

We have investigated the effect of the local activation of histamine H3 receptors (H3Rs) in the rat prefrontal cortex (PFCx) on the impairment of pre-pulse inhibition (PPI) of the startle response induced by the systemic administration of MK-801, antagonist at glutamate N-Methyl-d-Aspartate (NMDA) receptors, and the possible functional interaction between H3Rs and MK-801 on PFCx dopaminergic transmission. Infusion of the H3R agonist RAMH (19.8 ng/1 µl) into the PFCx reduced or prevented the inhibition by MK-801 (0.15 mg/kg, ip) of PPI evoked by different auditory stimulus intensities (5, 10 and 15 dB), and the RAMH effect was blocked by the H3R antagonist/inverse agonist ciproxifan (30.6 ng/1 µl). MK-801 inhibited [3H]-dopamine uptake (-45.4 ±â€¯2.1%) and release (-32.8 ±â€¯2.6%) in PFCx synaptosomes or slices, respectively, and molecular modeling indicated that MK-801 binds to and blocks the rat and human dopamine transporters. However, H3R activation had no effect on the inhibitory action of MK-801 on dopamine uptake and release. In PFCx slices, MK-801 and the activation of H3Rs or dopamine D1 receptors (D1Rs) stimulated ERK-1/2 and Akt phosphorylation. The co-activation of D1Rs and H3Rs prevented ERK-1/2 and Akt phosphorylation, and H3R activation or D1R blockade prevented the effect of MK-801. In ex vivo experiments, the intracortical infusion of the D1R agonist SKF-81297 (37 ng/1 µl) or the H3R agonist RAMH increased Akt phosphorylation, prevented by D1R/H3R co-activation. These results indicate that MK-801 enhances dopaminergic transmission in the PFCx, and that H3R activation counteracts the post-synaptic actions of dopamine.


Subject(s)
Dizocilpine Maleate/pharmacology , Prepulse Inhibition/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Histamine H3/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Reflex, Startle/drug effects , Animals , Benzazepines/administration & dosage , Benzazepines/pharmacology , Dizocilpine Maleate/administration & dosage , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Histamine Agonists/administration & dosage , Histamine Agonists/pharmacology , Imidazoles/administration & dosage , Imidazoles/pharmacology , Male , Microinjections , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Docking Simulation , Phosphorylation/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Tritium/metabolism
18.
Neurosci Lett ; 443(1): 32-6, 2008 Sep 26.
Article in English | MEDLINE | ID: mdl-18662743

ABSTRACT

Functional impairment after brain injury (BI) has been attributed to the inhibition of regions that are related to the injured site. Therefore, noradrenaline (NA) is thought to play a critical role in recovery from motor injury. However, the mechanism of this recovery process has not been completely elucidated. Moreover, the locus coeruleus (LC) projects from the pons through the rat sensorimotor cortex, and injury axotomizes LC fibers, depressing NA function. This was tested by measuring lipid peroxidation (LP) in the pons after sensorimotor cortex injury. Depression of function in the pons would be expected to alter areas receiving pontine efferents. Male Wistar rats were divided into three groups: control (n=16), injured (n=10) and recovering (n=16), and they were evaluated using a beam-walking assay between 2 and 20 days after cortical injury. We performed measures of NA and LP in both sides of the pons and cerebellum. We found a decrease of NA in the pons and the cerebellum, and a concomitant increase in the motor deficit and LP in the pons of injured animals. Recovering rats had NA and LP levels that were very similar to those observed in control rats. These observations suggest that the mechanism of remote inhibition after BI involves lipid peroxidation, and that the NA decrease found in the cerebellum of injured animals is mediated by a noradrenergic depression in the pons, or in areas receiving NA projections from the pons.


Subject(s)
Brain Injuries , Lipid Peroxidation/physiology , Norepinephrine/metabolism , Recovery of Function/physiology , Statistics as Topic , Animals , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/physiopathology , Cerebellum/metabolism , Disease Models, Animal , Functional Laterality , Lipid Peroxidation/drug effects , Male , Pons/metabolism , Pons/pathology , Psychomotor Performance/physiology , Rats , Rats, Wistar , Recovery of Function/drug effects , Time Factors
19.
Behav Brain Res ; 336: 145-150, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28842271

ABSTRACT

The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D1 receptors (D1Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D1R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (P<0.01) increased the motor deficit, while administration of the D1R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (P<0.01) but did not show recovery at 192h. In conclusion, the administration of the D1R agonist did not accelerate the motor recovery, but the activation of D1Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery.


Subject(s)
Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/physiology , Sensorimotor Cortex/physiology , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Benzazepines/metabolism , Benzazepines/pharmacology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/physiopathology , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopamine Antagonists/pharmacology , Male , Motor Cortex/physiopathology , Neostriatum/metabolism , Rats , Rats, Wistar , Receptors, Dopamine D1/agonists , Receptors, Dopamine D2/metabolism , Sensorimotor Cortex/metabolism
20.
Neurosci Lett ; 612: 116-120, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26639424

ABSTRACT

The noradrenergic and dopaminergic systems are associated with the motor system and have anatomical and functional connections that have not yet been studied. The present study aimed to examine the specific role of D1 receptors (D1Rs) on noradrenergic and dopaminergic responses in the rat brain. Male Wistar rats were assigned to eight groups to receive systemic injection of a D1R agonist (SKF-38393) at 0, 1, 5 or 10mg/kg or injection of a D1R antagonist (SCH-23390) at 0, 0.25, 0.5 or 1mg/kg. Dopamine (DA) and noradrenaline (NA) levels were measured using high-performance liquid chromatography. Injection of SKF-38393 alone at 1, 5 and 10mg/kg did not alter DA levels in the midbrain, cerebral cortex or pons, while it significantly increased these levels in the striatum (at 1 and 10mg/kg), hippocampus (at 1mg/kg) and cerebellum (at 1 and 5mg/kg). Administration of SKF-38393 at 1, 5, and 10mg/kg decreased the NA levels in the midbrain, pons, hippocampus (except at 1mg/kg) and cortex (except at 5mg/kg), whereas the opposite effect was observed in the striatum. SCH-23390 decreased the DA levels in the cortex (at 0.25 and 0.5mg/kg) and pons (at 0.5mg/kg). In contrast, 0.25, 0.5 and 1mg/kg SCH-23390 increased the DA levels in the cerebellum, whereas no differences from the control levels were observed for the DA levels in the striatum, midbrain and hippocampus. SCH-23390 at 0.5 and 1mg/kg increased the NA levels in the striatum. In contrast, the midbrain, hippocampus, cortex, pons and cerebellum did not exhibit altered NA levels. Our results demonstrate that the activation of D1Rs modulates the response of the noradrenergic system in nearly all of the investigated brain structures; thus, the blockade of D1Rs attenuates the effects induced by D1R activation.


Subject(s)
Brain/drug effects , Dopamine/metabolism , Norepinephrine/metabolism , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Benzazepines/pharmacology , Brain/metabolism , Male , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL