Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Environ Sci Technol ; 58(20): 8760-8770, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717860

ABSTRACT

Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.


Subject(s)
Oxygen , Oxygen/metabolism , Oxygen Consumption , Animals , Plankton/metabolism , Copepoda/metabolism
2.
Proc Natl Acad Sci U S A ; 117(18): 9679-9687, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32253312

ABSTRACT

The biological carbon pump (BCP) comprises wide-ranging processes that set carbon supply, consumption, and storage in the oceans' interior. It is becoming increasingly evident that small changes in the efficiency of the BCP can significantly alter ocean carbon sequestration and, thus, atmospheric CO2 and climate, as well as the functioning of midwater ecosystems. Earth system models, including those used by the United Nation's Intergovernmental Panel on Climate Change, most often assess POC (particulate organic carbon) flux into the ocean interior at a fixed reference depth. The extrapolation of these fluxes to other depths, which defines the BCP efficiencies, is often executed using an idealized and empirically based flux-vs.-depth relationship, often referred to as the "Martin curve." We use a new compilation of POC fluxes in the upper ocean to reveal very different patterns in BCP efficiencies depending upon whether the fluxes are assessed at a fixed reference depth or relative to the depth of the sunlit euphotic zone (Ez). We find that the fixed-depth approach underestimates BCP efficiencies when the Ez is shallow, and vice versa. This adjustment alters regional assessments of BCP efficiencies as well as global carbon budgets and the interpretation of prior BCP studies. With several international studies recently underway to study the ocean BCP, there are new and unique opportunities to improve our understanding of the mechanistic controls on BCP efficiencies. However, we will only be able to compare results between studies if we use a common set of Ez-based metrics.


Subject(s)
Carbon/metabolism , Climate Change , Ecosystem , Oceans and Seas , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Humans , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Seawater/chemistry
3.
Global Biogeochem Cycles ; 35(10): e2021GB006985, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35865105

ABSTRACT

To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (<100 µm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.

4.
Environ Sci Technol ; 54(23): 15066-15075, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33170656

ABSTRACT

The Fukushima Dai-ichi Nuclear Power Plants (FDNPPs) accident in 2011 led to an unprecedented release of radionuclides into the environment. Particularly important are 90Sr and 137Cs due to their known health detriments and long half-lives (T1/2 ≈ 30 y) relative to ecological systems. These radionuclides can be combined with the longer-lived 129I (T1/2 = 15.7 My) to trace hydrologic, atmospheric, oceanic, and geochemical processes. This study seeks to evaluate 137Cs, 90Sr, and 129I concentrations in seawater off the coast of Japan, reconcile the sources of contaminated waters, and assess the application of 137Cs/90Sr, 129I/137Cs, and 129I/90Sr as oceanic tracers. We present new data from October 2015 and November 2016 off the coast of Japan, with observed concentrations reaching up to 198 ± 4 Bq·m-3 for 137Cs, 9.1 ± 0.7 Bq·m-3 for 90Sr, and (114 ± 2) × 10-5 Bq·m-3 for 129I. The utilization of activity ratios suggests a variety of sources, including sporadic and independent releases of radiocontaminants. Though overall concentrations are decreasing, concentrations are still elevated compared to pre-accident levels. In addition, Japan's Environment Minister has suggested that stored water from the FDNPPs may be released into the environment and thus continued efforts to understand the fate and distribution of these radionuclides is warranted.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Iodine Radioisotopes , Japan , Oceans and Seas , Seawater , Strontium Radioisotopes , Water Pollutants, Radioactive/analysis
5.
Proc Natl Acad Sci U S A ; 114(42): 11092-11096, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28973919

ABSTRACT

There are 440 operational nuclear reactors in the world, with approximately one-half situated along the coastline. This includes the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which experienced multiple reactor meltdowns in March 2011 followed by the release of radioactivity to the marine environment. While surface inputs to the ocean via atmospheric deposition and rivers are usually well monitored after a nuclear accident, no study has focused on subterranean pathways. During our study period, we found the highest cesium-137 (137Cs) levels (up to 23,000 Bq⋅m-3) outside of the FDNPP site not in the ocean, rivers, or potable groundwater, but in groundwater beneath sand beaches over tens of kilometers away from the FDNPP. Here, we present evidence of a previously unknown, ongoing source of Fukushima-derived 137Cs to the coastal ocean. We postulate that these beach sands were contaminated in 2011 through wave- and tide-driven exchange and sorption of highly radioactive Cs from seawater. Subsequent desorption of 137Cs and fluid exchange from the beach sands was quantified using naturally occurring radium isotopes. This estimated ocean 137Cs source (0.6 TBq⋅y-1) is of similar magnitude as the ongoing releases of 137Cs from the FDNPP site for 2013-2016, as well as the input of Fukushima-derived dissolved 137Cs via rivers. Although this ongoing source is not at present a public health issue for Japan, the release of Cs of this type and scale needs to be considered in nuclear power plant monitoring and scenarios involving future accidents.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Groundwater/chemistry , Japan , Water Cycle
6.
Environ Sci Technol ; 53(4): 2229-2237, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30648847

ABSTRACT

Amidoxime-based adsorbents have become highly promising for seawater uranium extraction. However, current deployment schemes are stand-alone, intermittent operation systems that have significant practical and economic challenges. This paper presents two 1:10 scale prototypes of a Symbiotic Machine for Ocean uRanium Extraction (SMORE) which pairs with an existing offshore structure. This pairing reduces mooring and deployment costs while enabling continuous, autonomous uranium extraction. Utilizing a shell enclosure to decouple the mechanical and chemical requirements of the adsorbent, one design concept prototyped continuously moves the shells through the water while the other keeps them stationary. Water flow in the shells on each prototype was determined using the measurement of radium adsorbed by MnO2 impregnated acrylic fibers contained within each enclosure. The results from a nine-week ocean trial show that while movement of the shells through the water may not have an effect on uranium adsorption by the fibers encased, it could help reduce biofouling if above a certain threshold speed (resulting in increased uptake), while also allowing for the incorporation of design elements to further mitigate biofouling such as bristle brushes and UV lamps. The trace metal uptake by the AI8 adsorbents in this trial also varied greatly from previous marine deployments, suggesting that uranium uptake may depend greatly upon the seawater concentrations of other elements such as vanadium and copper. The results from this study will be used to inform future work on the seawater uranium production cost from a full-scale SMORE system.


Subject(s)
Uranium , Water Pollutants, Radioactive , Adsorption , Oceans and Seas , Seawater
7.
Environ Sci Technol ; 51(17): 9826-9835, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28726397

ABSTRACT

After the Fukushima Dai-ichi nuclear accident, many efforts were put into the determination of the presence of 137Cs, 134Cs, 131I, and other gamma-emitting radionuclides in the ocean, but minor work was done regarding the monitoring of less volatile radionuclides, pure beta-ray emitters or simply radionuclides with very long half-lives. In this study we document the temporal evolution of 129I, 236U, and Pu isotopes (239Pu and 240Pu) in seawater sampled during four different cruises performed 2, 3, and 4 years after the accident, and we compare the results to 137Cs collected at the same stations and depths. Our results show that concentrations of 129I are systematically above the nuclear weapon test levels at stations located close to the FDNPP, with a maximum value of 790 × 107 at·kg-1, that exceeds all previously reported 129I concentrations in the Pacific Ocean. Yet, the total amount of 129I released after the accident in the time 2011-2015 was calculated from the 129I/137Cs ratio of the ongoing 137Cs releases and estimated to be about 100 g (which adds to the 1 kg released during the accident in 2011). No clear evidence of Fukushima-derived 236U and Pu isotopes has been found in this study, although further monitoring is encouraged to elucidate the origin of the highest 240Pu/239Pu atom ratio of 0.293 ± 0.028 we found close to FDNPP.


Subject(s)
Fukushima Nuclear Accident , Water Pollutants, Radioactive , Cesium Radioisotopes , Japan , Nuclear Power Plants , Oceans and Seas , Pacific Ocean , Radiation Monitoring
8.
Environ Sci Technol ; 51(18): 10494-10502, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28876047

ABSTRACT

The large inventory of radioactivity released during the March, 2011 Fukushima Dai-ichi nuclear reactor accident in Japan spread rapidly across the North Pacific Ocean and was first observed at the westernmost station on Line P, an oceanographic sampling line extending 1500 km westward of British Columbia (BC), Canada in June 2012. Here, time series measurements of 134Cs and 137Cs in seawater on Line P and on the CLIVAR-P16N 152°W line reveal the recent transport history of the Fukushima radioactivity tracer plume through the northeast Pacific Ocean. During 2013 and 2014 the Fukushima plume spread onto the Canadian continental shelf and by 2015 and early 2016 it reached 137Cs values of 6-8 Bq/m3 in surface water along Line P. Ocean circulation model simulations that are consistent with the time series measurements of Fukushima 137Cs indicate that the 2015-2016 results represent maximum tracer levels on Line P and that they will begin to decline in 2017-2018. The current elevated Fukushima 137Cs levels in seawater in the eastern North Pacific are equivalent to fallout background levels of 137Cs that prevailed during the 1970s and do not represent a radiological threat to human health or the environment.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Water Pollutants, Radioactive/analysis , British Columbia , Japan , Pacific Ocean , Radiation Monitoring , Radioactivity , Seawater , Water Movements
9.
Environ Sci Technol ; 50(1): 173-80, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26629784

ABSTRACT

The years following the Fukushima Dai-ichi nuclear power plant (FDNPP) accident, the distribution of (90)Sr in seawater in the coast off Japan has received limited attention. However, (90)Sr is a major contaminant in waters accumulated within the nuclear facility and in the storage tanks. Seawater samples collected off the FDNPP in September 2013 showed radioactive levels significantly higher than pre-Fukushima levels within 6 km off the FDNPP. These samples, with up to 8.9 ± 0.4 Bq·m(-3) for (90)Sr, 124 ± 3 Bq·m(-3) for (137)Cs, and 54 ± 1 Bq·m(-3) for (134)Cs, appear to be influenced by ongoing releases from the FDNPP, with a characteristic (137)Cs/(90)Sr activity ratio of 3.5 ± 0.2. Beach surface water and groundwater collected in Sendai Bay had (137)Cs concentrations of up to 43 ± 1 Bq·m(-3), while (90)Sr was close to pre-Fukushima levels (1-2 Bq·m(-3)). These samples appear to be influenced by freshwater inputs carrying a (137)Cs/(90)Sr activity ratio closer to that of the FDNPP fallout deposited on land in the spring of 2011. Ongoing inputs of (90)Sr from FDNPP releases would be on the order of 2.3-8.5 GBq·d(-1) in September 2013, likely exceeding river inputs by 2-3 orders of magnitude. These results strongly suggest that a continuous surveillance of artificial radionuclides in the Pacific Ocean is still required.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Seawater/chemistry , Water Pollutants, Radioactive/analysis , Environmental Monitoring , Pacific Ocean
10.
Environ Sci Technol ; 49(16): 9807-16, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26158389

ABSTRACT

A three year time-series of particle fluxes is presented from sediment traps deployed at 500 and 1000 m at a site 115 km southeast of Fukushima Daiichi Nuclear Power Plant (FDNPP). Results show a high fraction of lithogenic material and mass flux peaks that do not align between the trap depths, suggesting a lateral source of sediments. Fukushima cesium-137 and cesium-134 were enhanced in flux peaks that, given variations in trap (137)Cs/(210)Pbex ratios, are characteristic of material derived from shelf and slope sediments found from <120 to >500 m. These lateral flux peaks are possibly triggered by passing typhoons. The Cs fluxes are an order of magnitude higher than were previously reported for the trap located 100 km due east of FDNPP. We attribute this large difference to the position of our trap under the southeasterly currents that carry contaminated waters and resuspended sediments away from FDNPP and into the Pacific. These higher Cs sedimentary fluxes offshore are still small relative to the inventory of Cs currently buried nearshore. Consequently, we do not expect them to effect any rapid decrease in Cs levels for the coastal sediments near FDNPP that have been linked to enhanced Cs in demersal fish.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Oceans and Seas , Particulate Matter/analysis , Animals , Fishes , Geography , Japan , Nuclear Power Plants , Radiation Monitoring , Water Pollutants, Radioactive/analysis
11.
Proc Natl Acad Sci U S A ; 109(16): 5984-8, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22474387

ABSTRACT

The Tohoku earthquake and tsunami of March 11, 2011, resulted in unprecedented radioactivity releases from the Fukushima Dai-ichi nuclear power plants to the Northwest Pacific Ocean. Results are presented here from an international study of radionuclide contaminants in surface and subsurface waters, as well as in zooplankton and fish, off Japan in June 2011. A major finding is detection of Fukushima-derived (134)Cs and (137)Cs throughout waters 30-600 km offshore, with the highest activities associated with near-shore eddies and the Kuroshio Current acting as a southern boundary for transport. Fukushima-derived Cs isotopes were also detected in zooplankton and mesopelagic fish, and unique to this study we also find (110 m)Ag in zooplankton. Vertical profiles are used to calculate a total inventory of ~2 PBq (137)Cs in an ocean area of 150,000 km(2). Our results can only be understood in the context of our drifter data and an oceanographic model that shows rapid advection of contaminants further out in the Pacific. Importantly, our data are consistent with higher estimates of the magnitude of Fukushima fallout and direct releases [Stohl et al. (2011) Atmos Chem Phys Discuss 11:28319-28394; Bailly du Bois et al. (2011) J Environ Radioact, 10.1016/j.jenvrad.2011.11.015]. We address risks to public health and marine biota by showing that though Cs isotopes are elevated 10-1,000× over prior levels in waters off Japan, radiation risks due to these radionuclides are below those generally considered harmful to marine animals and human consumers, and even below those from naturally occurring radionuclides.


Subject(s)
Biota , Radioactive Fallout/statistics & numerical data , Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Animals , Cesium Radioisotopes/analysis , Disasters , Earthquakes , Fishes/metabolism , Humans , Japan , Pacific Ocean , Radiation Monitoring/statistics & numerical data , Radioactive Hazard Release/statistics & numerical data , Tsunamis , Zooplankton/metabolism
12.
Nature ; 487(7407): 305-6, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22810691
13.
J Radioanal Nucl Chem ; 329(1): 1-13, 2021.
Article in English | MEDLINE | ID: mdl-34720316

ABSTRACT

The short-lived radionuclide 234Th is widely used to study particle scavenging and transport from the upper ocean to deeper waters. This manuscript optimizes, reviews and validates the collection, processing and analyses of total 234Th in seawater and suggests areas of further improvements. The standard 234Th protocol method consists of scavenging 234Th from seawater via a MnO2 precipitate, beta counting, and using chemical recoveries determined by adding 230Th. The revised protocol decreases sample volumes to 2 L, shortens wait times between steps, and simplifies the chemical recovery process, expanding the ability to more rapidly and safely apply the 234Th method.

14.
Sci Total Environ ; 749: 141357, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-32836116

ABSTRACT

The ocean's biological carbon pump (BCP) sequesters carbon from the surface to the deep ocean and seabed, constituting one of Earth's most valuable ecosystem services. Significant uncertainty exists surrounding the amounts and rates of organic carbon sequestered in the oceans, however. With improved understanding of BCP sequestration, especially its scale, world policymakers would be positioned to make more informed decisions regarding the mitigation of carbon emissions. Here, an analytical model of the economic effects of global carbon emissions-including scientific uncertainty about BCP sequestration-was developed to estimate the value of marine scientific research concerning sequestration. The discounted net economic benefit of a putative 20-year scientific research program to narrow the range of uncertainty around the amount of carbon sequestered in the ocean is on the order of $0.5 trillion (USD), depending upon the accuracy of predictions, the convexities of climate damage and economic output functions, and the initial range of uncertainty.

15.
Anal Sci ; 36(5): 569-573, 2020.
Article in English | MEDLINE | ID: mdl-32389934

ABSTRACT

Beach sand samples were collected along a coastal area 32 km south of the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Fukushima Prefecture, Japan, 5 years after the FDNPP accident. Desorption experiments were performed on the sand samples using seawater in a batch experimental system to understand the forms of existence of radiocesium in sand and their desorption behavior in a coastal environment. The percentage of radiocesium desorption decreased exponentially with an increase in the number of desorption experiments for the four sand samples, with 137Cs radioactivity from 16 to 1077 Bq kg-1 at surface and deeper layers from three sites. Total desorption percentage ranged from 19 to 58% in 12 desorption experiments. The results indicate that the weak adsorption varies with the sampling sites and their depth layer. To understand the desorption behavior of radiocesium in the sand samples, the desorption experiments were performed for a sand sample by using natural and artificial seawater, and NaCl solution in the presence and absence of KCl. The 137Cs desorption from the sand collected at a depth of 100 - 105 cm from the ground surface (137Cs radioactivity 1052 ± 25 Bq kg-1) was 0.1% by ultrapure water, 3.7% by 1/4 seawater and 7.1% by 1/2 seawater, 2.2% by 470 mM NaCl solution (corresponding to a similar concentration of seawater) and 10 - 12% by seawater, artificial seawater and 470 mM NaCl + 8 mM KCl solution. These results indicate that about 10% of radiocesium adsorbed on the sand is mainly desorbed by ion exchange of potassium ion in seawater, though the concentration of major cation, or sodium ion, in seawater makes a small contribution on 137Cs desorption from the sand samples.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Sand/chemistry , Japan
16.
Sci Total Environ ; 621: 1185-1198, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29096952

ABSTRACT

We made an assessment of the levels of radionuclides in the ocean waters, seafloor and groundwater at Bikini and Enewetak Atolls where the US conducted nuclear weapons tests in the 1940's and 50's. This included the first estimates of submarine groundwater discharge (SGD) derived from radium isotopes that can be used here to calculate radionuclide fluxes in to the lagoon waters. While there is significant variability between sites and sample types, levels of plutonium (239,240Pu) remain several orders of magnitude higher in lagoon seawater and sediments than what is found in rest of the world's oceans. In contrast, levels of cesium-137 (137Cs) while relatively elevated in brackish groundwater are only slightly higher in the lagoon water relative to North Pacific surface waters. Of special interest was the Runit dome, a nuclear waste repository created in the 1970's within the Enewetak Atoll. Low seawater ratios of 240Pu/239Pu suggest that this area is the source of about half of the Pu in the Enewetak lagoon water column, yet radium isotopes suggest that SGD from below the dome is not a significant Pu source. SGD fluxes of Pu and Cs at Bikini were also relatively low. Thus radioactivity associated with seafloor sediments remains the largest source and long term repository for radioactive contamination. Overall, Bikini and Enewetak Atolls are an ongoing source of Pu and Cs to the North Pacific, but at annual rates that are orders of magnitude smaller than delivered via close-in fallout to the same area.

17.
Sci Total Environ ; 372(2-3): 636-44, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17161448

ABSTRACT

A suboxic groundwater from a sandy coastal aquifer was sampled using a new air free, large volume sampling method. Subsequent processing for size fractionation was completed with a modified cross-flow ultrafiltration (CFF) system equipped with a 1 kDa CFF membrane. By purging the CFF system with nitrogen, no oxygen was able to reach the sample. With this optimization, the sample was processed with higher than 90% recovery in terms of both iron and phosphate. Only about 4% of iron and 20% of phosphate in the filtered (0.2 microm) groundwater sample was found to be in colloidal form in the groundwater. In contrast, if no care was taken to maintain the suboxic environment of the original sample, iron was rapidly and completely oxidized and subsequently adsorbed to the CFF membrane. Other elements, such as phosphorus, were also lost to the CFF membrane to a substantial degree, and the mechanism is most likely coprecipitation with iron oxides. This study thus strongly supports the importance of maintaining ambient redox conditions during sampling and fractionation, especially for the determinations of colloid abundances in groundwater.


Subject(s)
Colloids/analysis , Environmental Monitoring/methods , Iron/analysis , Ultrafiltration/methods , Water Pollutants, Chemical/analysis , Fresh Water , Iron/chemistry , Iron/metabolism , Membranes, Artificial , Oxidation-Reduction , Phosphates/analysis , Ultrafiltration/instrumentation
18.
J Contam Hydrol ; 76(3-4): 167-89, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15683879

ABSTRACT

We examined the concentration, size distribution, redox state and isotopic composition of plutonium (Pu) in groundwater at the 100K-Area at the U.S. Department of Energy's (DOE) Hanford Site. Total concentrations of Pu isotopes were extremely low (10(-4) to 10(-6) pCi/kg, approximately 10(4) to 10(6) atoms/kg) but measurable for the first time in the 100K-Area wells using mass spectrometric analyses that are much more sensitive than alpha spectroscopy methods used previously. Size fractionation data from two wells suggest that 7-29% of the Pu is associated with colloids, operationally defined here as particles between 1 kDa-0.2 microm in size. These colloids were collected using a 1 kDa cross-flow ultrafiltration (CFF) system developed specifically for groundwater actinide studies to include careful controls both in the field and during processing to ensure in situ geochemical conditions are maintained and size separations can be well characterized. Pu in this colloidal fraction was exclusively in the more reduced Pu(III/IV) form, consistent with the higher affinity of Pu in the lower oxidation states for particle surfaces. While the overall concentrations of Pu were low, the Pu isotopic composition suggests at least two local sources of groundwater Pu, namely, local Hanford reactor operations at the 100K-Area and spent nuclear fuel from the N-reactor, which was stored in concrete pools at this site. Differences between this site and the Savannah River Site (SRS) are noted, since groundwater Pu at the F-Area seepage basin at SRS has been found using these same methods, to be characterized by lower colloidal abundances and higher oxidation states. This difference is not directly attributable to groundwater redox potential or geochemical conditions, but rather the physical-chemical difference in Pu sources, which at SRS appear to be dominated downstream from the seepage basins by decay of 244Cm, resulting in more oxidized forms of 240Pu. There is no clear evidence for colloid facilitated transport of Pu in groundwater at the Hanford Site, since downstream wells have both an order of magnitude lower concentrations of Pu and a lower fractional colloidal distribution.


Subject(s)
Plutonium/analysis , Power Plants , Water Pollutants, Radioactive/analysis , Colloids , Mass Spectrometry , Oxidation-Reduction , Particle Size , Plutonium/chemistry , Radiation Monitoring , Radioactive Fallout , Radioisotopes/analysis , Ultrafiltration , Washington , Water/chemistry
19.
J Environ Radioact ; 81(1): 63-87, 2005.
Article in English | MEDLINE | ID: mdl-15748662

ABSTRACT

Under an IAEA's Co-ordinated Research Project "Worldwide Marine Radioactivity Studies (WOMARS)" 90Sr, 137Cs and (239,240)Pu concentration surface water time series in the Pacific and Indian Oceans have been investigated. The Pacific and Indian Oceans were divided into 17 latitudinal boxes according to ocean circulation, global fallout patterns and the location of nuclear weapons test sites. The present levels and time trends in radionuclide concentrations in surface water for each box were studied and the corresponding effective half-lives were estimated. For the year 2000, the estimated average 90Sr, 137Cs and (239,240)Pu concentrations in surface waters of the Pacific and Indian Oceans varied from 0.1 to 1.5 mBq/L, 0.1 to 2.8 mBq/L, and 0.1 to 5.2 microBq/L, respectively. The mean effective half-lives for 90Sr and 137Cs in surface water were 12+/-1 years for the North, 20+/-1 years for the South and 21+/-2 years for the Equatorial Pacific. For (239,240)Pu the corresponding mean effective half-lives were 7+/-1 years for the North, 12+/-4 years for the South and 10+/-2 years for the Equatorial Pacific. For the Indian Ocean the mean effective half-lives of 137Cs and (239,240)Pu were 21+/-2 years and 9+/-1 years, respectively. There is evidence that fallout removal rates before 1970 were faster than those observed during recent decades. The estimated surface water concentrations of 90Sr, 137Cs and (239,240)Pu in latitudinal belts of the Pacific and Indian Oceans for the year 2000 may be used as the average levels so that any new contribution from nuclear facilities, nuclear weapons test sites, radioactive waste dumping sites and from possible nuclear accidents can be identified.


Subject(s)
Cesium Radioisotopes/analysis , Plutonium/analysis , Seawater/analysis , Strontium Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Geography , Geologic Sediments/analysis , Global Health , Half-Life , Humans , Indian Ocean , International Cooperation , Nuclear Warfare/prevention & control , Nuclear Warfare/statistics & numerical data , Pacific Ocean , Radiation Monitoring/methods , Radioactive Fallout/analysis , Radioactive Fallout/prevention & control , Radioactive Fallout/statistics & numerical data , Radioactive Waste/analysis , Radioactive Waste/prevention & control , Radioactive Waste/statistics & numerical data , Regression Analysis , Time Factors , Water Movements , Water Pollution, Radioactive/analysis , Water Pollution, Radioactive/prevention & control , Water Pollution, Radioactive/statistics & numerical data
20.
Science ; 369(6504): 621-622, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32764053
SELECTION OF CITATIONS
SEARCH DETAIL