Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sensors (Basel) ; 15(6): 12342-57, 2015 May 26.
Article in English | MEDLINE | ID: mdl-26016917

ABSTRACT

The aim of this research was to validate a new procedure (SkanLab) for the three-dimensional estimation of total arm volume. SkanLab is based on a single structured-light Kinect sensor (Microsoft, Redmond, WA, USA) and on Skanect (Occipital, San Francisco, CA, USA) and MeshLab (Visual Computing Lab, Pisa, Italy) software. The volume of twelve plastic cylinders was measured using geometry, as the reference, water displacement and SkanLab techniques (two raters and repetitions). The right total arm volume of thirty adults was measured by water displacement (reference) and SkanLab (two raters and repetitions). The bias and limits of agreement (LOA) between techniques were determined using the Bland-Altman method. Intra- and inter-rater reliability was assessed using the intraclass correlation coefficient (ICC) and the standard error of measurement. The bias of SkanLab in measuring the cylinders volume was -21.9 mL (-5.7%) (LOA: -62.0 to 18.2 mL; -18.1% to 6.7%) and in measuring the volume of arms' was -9.9 mL (-0.6%) (LOA: -49.6 to 29.8 mL; -2.6% to 1.4%). SkanLab's intra- and inter-rater reliabilities were very high (ICC >0.99). In conclusion, SkanLab is a fast, safe and low-cost method for assessing total arm volume, with high levels of accuracy and reliability. SkanLab represents a promising tool in clinical applications.


Subject(s)
Anthropometry/methods , Imaging, Three-Dimensional/methods , Upper Extremity/physiology , Adult , Female , Humans , Lymphedema/physiopathology , Male , Middle Aged , Reproducibility of Results , Young Adult
2.
Parasitol Res ; 113(2): 701-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24288051

ABSTRACT

A diverse set of parasites and pathogens affects productivity and survival of Apis mellifera honeybees. In beekeeping, traditional control by antibiotics and molecules of synthesis has caused problems with contamination and resistant pathogens. In this research, different Laurus nobilis extracts are tested against the main honeybee pests through an integrated point of view. In vivo effects on bee survival are also evaluated. The ethanol extract showed minimal inhibitory concentration (MIC) values of 208 to 416 µg/mL, having the best antimicrobial effect on Paenibacillus larvae among all substances tested. Similarly, this leaf extract showed a significant antiparasitic activity on Varroa destructor, killing 50 % of mites 24 h after a 30-s exposure, and on Nosema ceranae, inhibiting the spore development in the midgut of adult bees ingesting 1 × 10(4) µg/mL of extract solution. Both ethanol extract and volatile extracts (essential oil, hydrolate, and its main component) did not cause lethal effects on adult honeybees. Thus, the absence of topical and oral toxicity of the ethanol extract on bees and the strong antimicrobial, microsporicidal, and miticidal effects registered in this study place this laurel extract as a promising integrated treatment of bee diseases and stimulates the search for other bioactive phytochemicals from plants.


Subject(s)
Acaricides/pharmacology , Anti-Infective Agents/pharmacology , Bees/microbiology , Bees/parasitology , Laurus/chemistry , Plant Extracts/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Nosema/drug effects , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Paenibacillus/drug effects , Plant Leaves/chemistry , Varroidae/drug effects
3.
Insect Sci ; 26(2): 297-310, 2019 Apr.
Article in English | MEDLINE | ID: mdl-28795524

ABSTRACT

Social insects have evolved colony behavioral, physiological, and organizational adaptations (social immunity) to reduce the risks of parasitization and/or disease transmission. The collection of resin from various plants and its use in the hive as propolis is a clear example of behavioral defense. For Apis mellifera, an increased propolis content in the hive may correspond to variations in the microbial load of the colony and to a downregulation of an individual bee's immune response. However, many aspects of such antimicrobial mechanism still need to be clarified. Assuming that bacterial and fungal infection mechanisms differ from the action of a parasite, we studied the resin collection dynamics in Varroa destructor-infested honeybee colonies. Comparative experiments involving hives with different mite infestation levels were conducted in order to assess the amount of resin collected and propolis quality within the hive, over a 2-year period (2014 and 2015). Our study demonstrates that when A. mellifera colonies are under stress because of Varroa infestation, an increase in the number of resin foragers is recorded, even if a general intensification of the foraging activity is not observed. A reduction in the total polyphenolic content in propolis produced in infested versus uninfested hives was also noticed. Considering that different propolis types show varying levels of inhibition against a variety of honey bee pathogens in vitro, it would be very important to study the effects against Varroa of two diverse types of propolis: from Varroa-free and from Varroa-infested hives.


Subject(s)
Bees/parasitology , Behavior, Animal , Flavonoids/analysis , Polyphenols/analysis , Propolis/chemistry , Animals , Host-Parasite Interactions , Varroidae
4.
PLoS One ; 12(7): e0180278, 2017.
Article in English | MEDLINE | ID: mdl-28678826

ABSTRACT

Predator-prey relationships between sympatric species allow the evolution of defense behaviors, such as honeybee colonies defending their nests against predatory wasps. We investigated the predator-prey relationship between the honeybee (Apis mellifera ligustica) and the European wasp (Vespula germanica) by evaluating the effectiveness of attack and defense behaviors, which have coevolved in these sympatric species, as well as the actual damage and disturbance caused to the colonies under attack. Attack and defense behaviors were recorded in front of the hive to observe attacks at the hive entrance (68 attacks in 279 h) and at ground level on isolated and weakened honeybees close to the hive (465 attacks in 32 h). We found that V. germanica attacked the hive entrance infrequently due to the low success rate of this strategy and instead preferred a specialized attack method targeting adult honeybees at ground level, demonstrating opportunistic scavenger behavior. Individual honeybees usually responded effectively to an attack by recruiting an average of two nestmates, causing the wasp to flee, whereas collective balling behavior was only observed on four occasions. V. germanica does not appear to disrupt the foraging activity of the colonies under attack. We found that agonistic events supported by other nestmates were typically the most intense ones, involving physical combat and prolonged attacks at the entrance to the hive. These observations support the hypothesis that A. mellifera ligustica can adapt its behavior to match the severity of the threat and the context of the attack.


Subject(s)
Agonistic Behavior/physiology , Bees/physiology , Predatory Behavior/physiology , Wasps/physiology , Animals , Avoidance Learning/physiology , Escape Reaction/physiology , Feeding Behavior/physiology , Nesting Behavior/physiology , Social Behavior
5.
In Vivo ; 28(1): 75-80, 2014.
Article in English | MEDLINE | ID: mdl-24425839

ABSTRACT

AIM: To propose an innovative methodology for the monitoring of the evolution of induced subcutaneous tumors in mice. MATERIALS AND METHODS: A new 3D scanner able to measure the tumor mass volume is presented. The scanner is based on the projection of a fringe pattern onto the sample surface (structured light). The lines are diffused by the sample and then collected by a digital camera. The obtained 2D-image is treated by the scanner's software that extracts the 3D information and evaluates the sample volume. RESULTS: The 3D scanner has been successfully used in the measurement of subcutaneous HT-29 colorectal cancer xenografts treated with 5-fluorouracil, bevacizumab and their combination. Comparison with simple caliper measurements revealed important and significant differences between the two measurement techniques. CONCLUSION: The proposed methodology is more effective than the usual approach based on caliper measurements.


Subject(s)
Colorectal Neoplasms/diagnosis , Imaging, Three-Dimensional , Software , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Fluorouracil/administration & dosage , HT29 Cells , Humans , Mice , Xenograft Model Antitumor Assays
6.
Environ Sci Pollut Res Int ; 19(9): 3977-88, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22532121

ABSTRACT

Mining activities represent a major source of environment contamination. The aim of this study was to evaluate the use of bees and ants as bioindicators to detect the heavy metal impact in post-mining areas. A biomonitoring programme involving a combination of honeybee hive matrices analysis and ant biodiversity survey was conducted over a 3-year period. The experimental design involved three monitoring stations where repeated sampling activities focused on chemical detection of cadmium (Cd), chrome (Cr) and lead (Pb) from different matrices, both from hosted beehives (foraging bees, honey and pollen) and from the surrounding environment (stream water and soil). At the same time, ant biodiversity (number and abundance of species) was determined through a monitoring programme based on the use of pitfall traps placed in different habitats inside each mining site. The heavy metal content detected in stream water from the control station was always below the analytical limit of quantification. In the case of soil, the content of Cd and Pb from the control was lower than that of mining sites. The mean heavy metal concentrations in beehive matrices from mining sites were mainly higher than the control, and as a result of regression and discriminant analysis, forager bee sampling was an efficient environmental pollution bioindicator. Ant collection and identification highlighted a wide species variety with differences among habitats mostly associated with vegetation features. A lower variability was observed in the polluted landfill characterised by lack of vegetation. Combined biomonitoring with forager bees and ants represents a reliable tool for heavy metal environmental impact studies.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/analysis , Mining , Soil Pollutants/analysis , Animals , Ants/classification , Ants/metabolism , Bees/metabolism , Biodiversity , Environmental Pollution/statistics & numerical data , Italy
SELECTION OF CITATIONS
SEARCH DETAIL