Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Diabetologia ; 61(8): 1780-1793, 2018 08.
Article in English | MEDLINE | ID: mdl-29754287

ABSTRACT

AIMS/HYPOTHESIS: Dietary n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), are known to influence glucose homeostasis. We recently showed that Elovl2 expression in beta cells, which regulates synthesis of endogenous DHA, was associated with glucose tolerance and played a key role in insulin secretion. The present study aimed to examine the role of the very long chain fatty acid elongase 2 (ELOVL2)/DHA axis on the adverse effects of palmitate with high glucose, a condition defined as glucolipotoxicity, on beta cells. METHODS: We detected ELOVL2 in INS-1 beta cells and mouse and human islets using quantitative PCR and western blotting. Downregulation and adenoviral overexpression of Elovl2 was carried out in beta cells. Ceramide and diacylglycerol levels were determined by radio-enzymatic assay and lipidomics. Apoptosis was quantified using caspase-3 assays and poly (ADP-ribose) polymerase cleavage. Palmitate oxidation and esterification were determined by [U-14C]palmitate labelling. RESULTS: We found that glucolipotoxicity decreased ELOVL2 content in rodent and human beta cells. Downregulation of ELOVL2 drastically potentiated beta cell apoptosis induced by glucolipotoxicity, whereas adenoviral Elovl2 overexpression and supplementation with DHA partially inhibited glucolipotoxicity-induced cell death in rodent and human beta cells. Inhibition of beta cell apoptosis by the ELOVL2/DHA axis was associated with a decrease in ceramide accumulation. However, the ELOVL2/DHA axis was unable to directly alter ceramide synthesis or metabolism. By contrast, DHA increased palmitate oxidation but did not affect its esterification. Pharmacological inhibition of AMP-activated protein kinase and etomoxir, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme in fatty acid ß-oxidation, attenuated the protective effect of the ELOVL2/DHA axis during glucolipotoxicity. Downregulation of CPT1 also counteracted the anti-apoptotic action of the ELOVL2/DHA axis. By contrast, a mutated active form of Cpt1 inhibited glucolipotoxicity-induced beta cell apoptosis when ELOVL2 was downregulated. CONCLUSIONS/INTERPRETATION: Our results identify ELOVL2 as a critical pro-survival enzyme for preventing beta cell death and dysfunction induced by glucolipotoxicity, notably by favouring palmitate oxidation in mitochondria through a CPT1-dependent mechanism.


Subject(s)
Acetyltransferases/metabolism , Docosahexaenoic Acids/metabolism , Animals , Apoptosis/physiology , Fatty Acid Elongases , Glucose/metabolism , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Mice , Oxidation-Reduction , Palmitates/metabolism
2.
Diabetologia ; 61(3): 641-657, 2018 03.
Article in English | MEDLINE | ID: mdl-29185012

ABSTRACT

AIMS/HYPOTHESIS: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS: Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS: Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION: These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.


Subject(s)
Biological Specimen Banks , Diabetes Mellitus, Type 2/metabolism , Systems Biology/methods , Tissue Donors , Transcriptome/genetics , Aged , Aged, 80 and over , Computational Biology , Female , Humans , Male , Pancreatectomy
3.
J Biol Chem ; 292(36): 14977-14988, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28698383

ABSTRACT

Cytokine-induced endoplasmic reticulum (ER) stress is one of the molecular mechanisms underlying pancreatic ß-cell demise in type 1 diabetes. Thrombospondin 1 (THBS1) was recently shown to promote ß-cell survival during lipotoxic stress. Here we show that ER-localized THBS1 is cytoprotective to rat, mouse, and human ß-cells exposed to cytokines or thapsigargin-induced ER stress. THBS1 confers cytoprotection by maintaining expression of mesencephalic astrocyte-derived neutrotrophic factor (MANF) in ß-cells and thereby prevents the BH3-only protein BIM (BCL2-interacting mediator of cell death)-dependent triggering of the mitochondrial pathway of apoptosis. Prolonged exposure of ß-cells to cytokines or thapsigargin leads to THBS1 and MANF degradation and loss of this prosurvival mechanism. Approaches that sustain intracellular THBS1 and MANF expression in ß-cells should be explored as a cytoprotective strategy in type 1 diabetes.


Subject(s)
Inflammation/metabolism , Insulin-Secreting Cells/metabolism , Nerve Growth Factors/metabolism , Thrombospondin 1/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Endoplasmic Reticulum/metabolism , Humans , Insulin-Secreting Cells/drug effects , Mice , Nerve Growth Factors/antagonists & inhibitors , Oxidative Stress , Thapsigargin/pharmacology
4.
Biochem Biophys Res Commun ; 503(4): 2710-2714, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30119894

ABSTRACT

Light scattering was recently demonstrated to serve as an intrinsic indicator for pancreatic islet cell mass and secretion. The insulin secretory granule (ISG), in particular, was proposed to be a reasonable candidate as the main intracellular source of scattered light due to the densely-packed insulin semi-crystal in the granule lumen. This scenario, if confirmed, would in principle open new perspectives for label-free single-granule imaging, tracking, and analysis. Contrary to such expectations, here we demonstrate that ISGs are not a primary source of scattering in primary human ß-cells, as well as in immortalized ß-like cells, quantitatively not superior to other intracellular organelles/structures, such as lysosomes and internal membranes. This result is achieved through multi-channel imaging of scattered light along with fluorescence arising from selectively-labelled ISGs. Co-localization and spatiotemporal cross-correlation analysis is performed on these signals, and compared among different cell lines. Obtained results suggest a careful re-thinking of the possibility to exploit intrinsic optical properties originating from ISGs for single-granule imaging purposes.


Subject(s)
Cytoplasmic Granules/ultrastructure , Insulin-Secreting Cells/ultrastructure , Islets of Langerhans/ultrastructure , Lysosomes/ultrastructure , Secretory Vesicles/ultrastructure , Single-Cell Analysis/methods , Aged , Aged, 80 and over , Animals , CHO Cells , Cell Line , Cricetulus , Cytoplasmic Granules/metabolism , Female , Genes, Reporter , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lysosomes/metabolism , Male , Middle Aged , Optical Imaging/methods , Plasmids/chemistry , Plasmids/metabolism , Rats , Secretory Vesicles/metabolism , Single-Cell Analysis/standards , Spectrometry, Fluorescence/methods , Transfection , Red Fluorescent Protein
5.
Diabetes Obes Metab ; 20(12): 2800-2810, 2018 12.
Article in English | MEDLINE | ID: mdl-29974637

ABSTRACT

AIMS: To investigate the effect of kisspeptin on glucose-stimulated insulin secretion and appetite in humans. MATERIALS AND METHODS: In 15 healthy men (age: 25.2 ± 1.1 years; BMI: 22.3 ± 0.5 kg m-2 ), we compared the effects of 1 nmol kg-1 h-1 kisspeptin versus vehicle administration on glucose-stimulated insulin secretion, metabolites, gut hormones, appetite and food intake. In addition, we assessed the effect of kisspeptin on glucose-stimulated insulin secretion in vitro in human pancreatic islets and a human ß-cell line (EndoC-ßH1 cells). RESULTS: Kisspeptin administration to healthy men enhanced insulin secretion following an intravenous glucose load, and modulated serum metabolites. In keeping with this, kisspeptin increased glucose-stimulated insulin secretion from human islets and a human pancreatic cell line in vitro. In addition, kisspeptin administration did not alter gut hormones, appetite or food intake in healthy men. CONCLUSIONS: Collectively, these data demonstrate for the first time a beneficial role for kisspeptin in insulin secretion in humans in vivo. This has important implications for our understanding of the links between reproduction and metabolism in humans, as well as for the ongoing translational development of kisspeptin-based therapies for reproductive and potentially metabolic conditions.


Subject(s)
Appetite/drug effects , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Kisspeptins/pharmacology , Adolescent , Adult , Cell Line , Glucose/metabolism , Healthy Volunteers , Humans , Insulin/blood , Male , Young Adult
6.
Nanomedicine ; 14(7): 2191-2203, 2018 10.
Article in English | MEDLINE | ID: mdl-30016718

ABSTRACT

To improve the efficiency of pancreatic islet transplantation, we performed in-vitro and in-vivo experiments with isolated human pancreatic islets coated by multi-layer nano-encapsulation using differently charged polymers [chitosan and poly(sodium styrene sulfonate)] to obtain up to 9 layers. The islet coating (thickness: 104.2 ±â€¯4.2 nm) was uniform, with ≥ 90% cell viability and well preserved beta- and alpha-cell ultrastructure. Nano-encapsulated islets maintained physiological glucose-stimulated insulin secretion by both static incubation and perifusion studies. Notably, palmitate- or cytokine-induced toxicity was significantly reduced in nano-coated islets. Xenotransplantation of nano-encapsulated islets under the kidney capsule of streptozotocin-induced C57Bl/6J diabetic mice allowed long term normal or near normal glycemia, associated with minimal infiltration of immune cell into the grafts, well preserved islet morphology and signs of re-vascularization. In summary, the multi-layer nano-encapsulation approach described in the present study provides a promising tool to effectively protect human islets both in-vitro andin-vivo conditions.


Subject(s)
Coated Materials, Biocompatible/chemistry , Diabetes Mellitus, Experimental/prevention & control , Islets of Langerhans Transplantation , Islets of Langerhans/cytology , Nanostructures/administration & dosage , Animals , Blood Glucose/analysis , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Nanostructures/chemistry , Transplantation, Heterologous
7.
J Biol Chem ; 291(23): 12040-56, 2016 Jun 03.
Article in English | MEDLINE | ID: mdl-27044747

ABSTRACT

Pro-inflammatory cytokines contribute to pancreatic beta cell apoptosis in type 1 diabetes at least in part by inducing endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). It remains to be determined what causes the transition from "physiological" to "apoptotic" UPR, but accumulating evidence indicates that signaling by the ER transmembrane protein IRE1α is critical for this transition. IRE1α activation is regulated by both intra-ER and cytosolic cues. We evaluated the role for the presently discovered cytokine-induced and IRE1α-interacting protein ubiquitin D (UBD) on the regulation of IRE1α and its downstream targets. UBD was identified by use of a MAPPIT (mammalian protein-protein interaction trap)-based IRE1α interactome screen followed by comparison against functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines. Knockdown of UBD in human and rodent beta cells and detailed signal transduction studies indicated that UBD modulates cytokine-induced UPR/IRE1α activation and apoptosis. UBD expression is induced by the pro-inflammatory cytokines interleukin (IL)-1ß and interferon (IFN)-γ in rat and human pancreatic beta cells, and it is also up-regulated in beta cells of inflamed islets from non-obese diabetic mice. UBD interacts with IRE1α in human and rodent beta cells, modulating IRE1α-dependent activation of JNK and cytokine-induced apoptosis. Our data suggest that UBD provides a negative feedback on cytokine-induced activation of the IRE1α/JNK pro-apoptotic pathway in cytokine-exposed beta cells.


Subject(s)
Apoptosis , Endoribonucleases/metabolism , Insulin-Secreting Cells/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Ubiquitins/metabolism , Aged , Aged, 80 and over , Animals , Blotting, Western , Cell Line , Cell Line, Tumor , Cells, Cultured , Cytokines/pharmacology , Endoribonucleases/genetics , Female , Gene Expression/drug effects , HEK293 Cells , Humans , Insulin-Secreting Cells/drug effects , Male , Middle Aged , Protein Binding , Protein Serine-Threonine Kinases/genetics , RNA Interference , Rats , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitins/genetics , Young Adult
8.
Diabetes Metab Res Rev ; 33(6)2017 09.
Article in English | MEDLINE | ID: mdl-28303682

ABSTRACT

BACKGROUND: Both types of diabetes are characterized by beta-cell failure and death, leading to insulin insufficiency. Very limited information is currently available about the ultrastructural alterations of beta cells in human diabetes. Our aim was to provide a comprehensive ultrastructural analysis of human pancreatic islets in type 1 (T1D) and type 2 (T2D) diabetic patients. METHODS: We performed a morphometric electron microscopy evaluation of beta cells obtained from the pancreas of 8 nondiabetic (ND), 5 T1D, and 8 T2D organ donors. RESULTS: A lower amount of beta cells was found in both T1D and T2D than in ND islets, whereas alpha cells were increased only in T2D. An increased number of bi-hormonal cells (showing both insulin and glucagon granules in their cytoplasm) were found in T1D. Insulin granules were less represented in T2D than in ND beta cells, whereas no significant changes were found in T1D. Volume density of the endoplasmic reticulum was increased in T2D and unchanged in T1D; mitochondria number and volume were significantly higher in T2D than in ND beta cells, whereas no significant differences were found in T1D. In both T1D and T2D, more beta cells showed signs of apoptosis than in ND. CONCLUSIONS: Our results show that in each type of diabetes, beta cells exhibit specific ultrastructural alterations, whose better understanding might improve therapeutic strategies.


Subject(s)
Diabetes Mellitus/pathology , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/ultrastructure , Islets of Langerhans/pathology , Islets of Langerhans/ultrastructure , Adult , Aged , Autopsy , Female , Humans , Male , Middle Aged , Young Adult
9.
Int J Mol Sci ; 18(11)2017 Oct 25.
Article in English | MEDLINE | ID: mdl-29068419

ABSTRACT

Background: Diabetes mellitus (DM) is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF)-2b controls ß-cell clusters via autocrine action, and human placental lactogen (hPL)-A increases functional ß-cells. We hypothesized whether FGF-2b/hPL-A treatment induces ß-cell differentiation from ductal/non-endocrine precursor(s) by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1) and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05) increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1), Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2), compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9) were decreased (p < 0.05). These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.


Subject(s)
Cell Differentiation , Fibroblast Growth Factor 2/physiology , Insulin-Secreting Cells , Pancreatic Ducts/physiology , Placental Lactogen/physiology , Diabetes Mellitus/therapy , Female , Fibroblast Growth Factor 2/metabolism , Homeobox Protein Nkx-2.2 , Homeodomain Proteins , Humans , Male , Middle Aged , Nuclear Proteins , Pancreatic Ducts/cytology , Pancreatic Ducts/metabolism , Placental Lactogen/metabolism , Regenerative Medicine/methods , Transcription Factors
10.
EMBO J ; 31(6): 1405-26, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22293752

ABSTRACT

In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non-diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non-diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in ß-cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Aged , Animals , Cell Line , CpG Islands , DNA Fingerprinting/methods , Epigenesis, Genetic , Genetic Loci , Glucose/metabolism , Humans , Promoter Regions, Genetic , Rats , Transcription, Genetic
11.
Diabetologia ; 58(11): 2554-62, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26276263

ABSTRACT

AIMS/HYPOTHESIS: Beta cell destruction in human type 1 diabetes occurs through the interplay of genetic and environmental factors, and is mediated by immune cell infiltration of pancreatic islets. In this study, we explored the role of mast cells as an additional agent in the pathogenesis of type 1 diabetes insulitis. METHODS: Pancreatic tissue from donors without diabetes and with type 1 and 2 diabetes was studied using different microscopy techniques to identify islet-infiltrating cells. The direct effects of histamine exposure on isolated human islets and INS-1E cells were assessed using cell-survival studies and molecular mechanisms. RESULTS: A larger number of mast cells were found to infiltrate pancreatic islets in samples from donors with type 1 diabetes, compared with those from donors without diabetes or with type 2 diabetes. Evidence of mast cell degranulation was observed, and the extent of the infiltration correlated with beta cell damage. Histamine, an amine that is found at high levels in mast cells, directly contributed to beta cell death in isolated human islets and INS-1E cells via a caspase-independent pathway. CONCLUSIONS/INTERPRETATION: These findings suggest that mast cells might be responsible, at least in part, for immune-mediated beta cell alterations in human type 1 diabetes. If this is the case, inhibition of mast cell activation and degranulation might act to protect beta cells in individuals with type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1/pathology , Islets of Langerhans/pathology , Mast Cells/pathology , Pancreas/pathology , Adult , Aged , Cell Survival , Female , Humans , Male , Middle Aged , Young Adult
12.
Diabetologia ; 58(10): 2307-16, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26099855

ABSTRACT

AIMS/HYPOTHESIS: Proinflammatory cytokines contribute to beta cell damage in type 1 diabetes in part through activation of endoplasmic reticulum (ER) stress. In rat beta cells, cytokine-induced ER stress involves NO production and consequent inhibition of the ER Ca(2+) transporting ATPase sarco/endoplasmic reticulum Ca(2+) pump 2 (SERCA2B). However, the mechanisms by which cytokines induce ER stress and apoptosis in mouse and human pancreatic beta cells remain unclear. The purpose of this study is to elucidate the role of ER stress on cytokine-induced beta cell apoptosis in these three species and thus solve ongoing controversies in the field. METHODS: Rat and mouse insulin-producing cells, human pancreatic islets and human EndoC-ßH1 cells were exposed to the cytokines IL-1ß, TNF-α and IFN-γ, with or without NO inhibition. A global comparison of cytokine-modulated gene expression in human, mouse and rat beta cells was also performed. The chemical chaperone tauroursodeoxycholic acid (TUDCA) and suppression of C/EBP homologous protein (CHOP) were used to assess the role of ER stress in cytokine-induced apoptosis of human beta cells. RESULTS: NO plays a key role in cytokine-induced ER stress in rat islets, but not in mouse or human islets. Bioinformatics analysis indicated greater similarity between human and mouse than between human and rat global gene expression after cytokine exposure. The chemical chaperone TUDCA and suppression of CHOP or c-Jun N-terminal kinase (JNK) protected human beta cells against cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION: These observations clarify previous results that were discrepant owing to the use of islets from different species, and confirm that cytokine-induced ER stress contributes to human beta cell death, at least in part via JNK activation.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Insulin-Secreting Cells/drug effects , Interferon-gamma/pharmacology , Interleukin-1beta/pharmacology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Cytokines/pharmacology , Enzyme Inhibitors/pharmacology , Humans , Insulin-Secreting Cells/metabolism , Male , Mice , Nitric Oxide Synthase Type II/antagonists & inhibitors , Rats , Rats, Wistar , Taurochenodeoxycholic Acid/pharmacology , Transcription Factor CHOP/pharmacology , omega-N-Methylarginine/pharmacology
13.
Diabetologia ; 58(6): 1260-71, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25810038

ABSTRACT

AIMS/HYPOTHESIS: The role of the redox adaptor protein p66(Shc) as a potential mediator of saturated fatty acid (FA)-induced beta cell death was investigated. METHODS: The effects of the FA palmitate on p66(Shc) expression were evaluated in human and murine islets and in rat insulin-secreting INS-1E cells. p66(Shc) expression was also measured in islets from mice fed a high-fat diet (HFD) and from human donors with different BMIs. Cell apoptosis was quantified by two independent assays. The role of p66(Shc) was investigated using pancreatic islets from p66 (Shc-/-) mice and in INS-1E cells with knockdown of p66(Shc) or overexpression of wild-type and phosphorylation-defective p66(Shc). Production of reactive oxygen species (ROS) was evaluated by the dihydroethidium oxidation method. RESULTS: Palmitate induced a selective increase in p66(Shc) protein expression and phosphorylation on Ser(36) and augmented apoptosis in human and mouse islets and in INS-1E cells. Inhibiting the tumour suppressor protein p53 prevented both the palmitate-induced increase in p66(Shc) expression and beta cell apoptosis. Palmitate-induced apoptosis was abrogated in islets from p66 (Shc-/-) mice and following p66 (Shc) knockdown in INS-1E cells; by contrast, overexpression of p66(Shc), but not that of the phosphorylation-defective p66(Shc) mutant, enhanced palmitate-induced apoptosis. The pro-apoptotic effects of p66(Shc) were dependent upon its c-Jun N-terminal kinase-mediated phosphorylation on Ser(36) and associated with generation of ROS. p66(Shc) protein expression and function were also elevated in islets from HFD-fed mice and from obese/overweight cadaveric human donors. CONCLUSIONS/INTERPRETATION: p53-dependent augmentation of p66(Shc) expression and function represents a key signalling response contributing to beta cell apoptosis under conditions of lipotoxicity.


Subject(s)
Apoptosis , Fatty Acids/metabolism , Insulin-Secreting Cells/cytology , Shc Signaling Adaptor Proteins/metabolism , Adenoviridae/genetics , Aged , Animals , Body Mass Index , Diet, High-Fat , Female , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Oxidation-Reduction , Phosphorylation , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/metabolism , Signal Transduction , Src Homology 2 Domain-Containing, Transforming Protein 1 , Tumor Suppressor Protein p53/metabolism
14.
Diabetologia ; 57(2): 362-5, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24233056

ABSTRACT

AIMS/HYPOTHESIS: Previous work has demonstrated that beta cell amount (whether measured as beta cell mass, beta cell volume or insulin-positive area) is decreased in type 2 diabetes; however, recent findings suggest that mechanisms other than death may contribute to beta cell failure in this disease. To better characterise beta cell mass and function in type 2 diabetes, we performed morphological, ultra-structural and functional studies using histological samples and isolated islets. METHODS: Pancreases from ten non-diabetic (ND) and ten matched type 2 diabetic organ donors were studied by insulin, glucagon and chromogranin A immunocytochemistry and electron microscopy (EM). Glucose-stimulated insulin secretion was assessed using isolated islets and studies were performed using independent ND islet preparations after 24 h exposure to 22.2 mmol/l glucose. RESULTS: Immunocytochemistry showed that the fractional islet insulin-positive area was lower in type 2 diabetic islets (54.9 ± 6.3% vs 72.1 ± 8.7%, p < 0.01), whereas glucagon (23.3 ± 5.4% vs 20.2 ± 5.3%) and chromogranin A (86.4 ± 6.1% vs 89.0 ± 5.5%) staining was similar between the two groups. EM showed that the proportion of beta cells in type 2 diabetic islets was only marginally decreased; marked beta cell degranulation was found in diabetic beta cells; these findings were all reproduced after exposing isolated ND islets to high glucose. Glucose-stimulated insulin secretion was 40­50% lower from type 2 diabetic islets (p < 0.01), which again was mimicked by culturing non-diabetic islets in high glucose. CONCLUSIONS/INTERPRETATION: These results suggest that, at least in subgroups of type 2 diabetic patients, the loss of beta cells as assessed so far might be overestimated, possibly due to changes in beta cell phenotype other than death, also contributing to beta cell failure in type 2 diabetes.


Subject(s)
Chromogranin A/metabolism , Diabetes Mellitus, Type 2/pathology , Glucagon/metabolism , Insulin-Secreting Cells/pathology , Insulin/metabolism , Pancreas/pathology , Aged , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Immunohistochemistry , Male , Microscopy, Electron
16.
J Proteome Res ; 12(9): 4193-206, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23937086

ABSTRACT

Glucagon-like peptide-1 (GLP-1) has been shown to protect pancreatic ß-cells against cytokine-induced dysfunction and destruction. The mechanisms through which GLP-1 exerts its effects are complex and still poorly understood. The aim of this study was to analyze the protein expression profiles of human islets of Langerhans treated with cytokines (IL-1ß and IFN-γ) in the presence or absence of GLP-1 by 2D difference gel electrophoresis and subsequent protein interaction network analysis to understand the molecular pathways involved in GLP-1-mediated ß-cell protection. Co-incubation of cytokine-treated human islets with GLP-1 resulted in a marked protection of ß-cells against cytokine-induced apoptosis and significantly attenuated cytokine-mediated inhibition of glucose-stimulated insulin secretion. The cytoprotective effects of GLP-1 coincided with substantial alterations in the protein expression profile of cytokine-treated human islets, illustrating a counteracting effect on proteins from different functional classes such as actin cytoskeleton, chaperones, metabolic proteins, and islet regenerating proteins. In summary, GLP-1 alters in an integrated manner protein networks in cytokine-exposed human islets while protecting them against cytokine-mediated cell death and dysfunction. These data illustrate the beneficial effects of GLP-1 on human islets under immune attack, leading to a better understanding of the underlying mechanisms involved, a prerequisite for improving therapies for diabetic patients.


Subject(s)
Apoptosis , Glucagon-Like Peptide 1/physiology , Insulin-Secreting Cells/metabolism , Adult , Aged , Cells, Cultured , Cytoskeleton/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Female , Humans , Insulin/metabolism , Insulin Secretion , Interferon-gamma/physiology , Interleukin-1beta/physiology , Islets of Langerhans/pathology , Islets of Langerhans/physiopathology , Male , Middle Aged , Protein Interaction Maps , Proteolysis , Proteome/metabolism , Proteomics , RNA, Transfer/biosynthesis , Secretory Vesicles/metabolism
17.
J Biol Chem ; 286(6): 4216-25, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21127054

ABSTRACT

Phosphoinositide 3-kinases (PI3Ks) are critical regulators of pancreatic ß cell mass and survival, whereas their involvement in insulin secretion is more controversial. Furthermore, of the different PI3Ks, the class II isoforms were detected in ß cells, although their role is still not well understood. Here we show that down-regulation of the class II PI3K isoform PI3K-C2α specifically impairs insulin granule exocytosis in rat insulinoma cells without affecting insulin content, the number of insulin granules at the plasma membrane, or the expression levels of key proteins involved in insulin secretion. Proteolysis of synaptosomal-associated protein of 25 kDa, a process involved in insulin granule exocytosis, is impaired in cells lacking PI3K-C2α. Finally, our data suggest that the mRNA for PI3K-C2α may be down-regulated in islets of Langerhans from type 2 diabetic compared with non-diabetic individuals. Our results reveal a critical role for PI3K-C2α in ß cells and suggest that down-regulation of PI3K-C2α may be a feature of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Down-Regulation , Exocytosis , Gene Expression Regulation, Enzymologic , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Phosphatidylinositol 3-Kinases/biosynthesis , Secretory Vesicles/metabolism , Animals , Cell Line, Tumor , Diabetes Mellitus, Type 2/genetics , Humans , Insulin/genetics , Insulin Secretion , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphatidylinositol 3-Kinases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Synaptosomal-Associated Protein 25/genetics , Synaptosomal-Associated Protein 25/metabolism
18.
Adv Exp Med Biol ; 771: 288-309, 2012.
Article in English | MEDLINE | ID: mdl-23393686

ABSTRACT

Bell-cell (beta-cell) impairment is central to the development and progression of human diabetes, as a result of the combined effects of genetic and acquired factors. Reduced islet number and/or reduced beta cells amount in the pancreas of individuals with Type 2 diabetes have been consistently reported. This is mainly due to increased beta cell death, not adequately compensated for by regeneration. In addition, several quantitative and/or qualitative defects of insulin secretion have been observed in Type 2 diabetes, both in vivo and ex vivo with isolated islets. All this is associated with modifications of islet cell gene and protein expression. With the identification of several susceptible Type 2 diabetes loci, the role of genotype in affecting beta-cell function and survival has been addressed in a few studies and the relationships between genotype and beta-cell phenotype investigated. Among acquired factors, the importance of metabolic insults (in particular glucotoxicity and lipotoxicity) in the natural history of beta-cell damage has been widely underlined. Continuous improvements in our knowledge of the beta cells in human Type 2 diabetes will lead to more targeted and effective strategies for the prevention and treatment of the disease.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/physiology , Diabetes Mellitus, Type 2/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism
19.
Acta Diabetol ; 59(1): 113-126, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34499239

ABSTRACT

AIMS: Stevia rebaudiana Bertoni leaf extracts have gained increasing attention for their potential protection against type 2 diabetes. In this study, we have evaluated the possible beneficial effects of Stevia rebaudiana leaf extracts on beta-cells exposed to lipotoxicity and explored some of the possible mechanisms involved. METHODS: Extracts, deriving from six different chemotypes (ST1 to ST6), were characterized in terms of steviol glycosides, total phenols, flavonoids, and antioxidant activity. INS-1E beta cells and human pancreatic islets were incubated 24 h with 0.5 mM palmitate with or without varying concentrations of extracts. Beta-cell/islet cell features were analyzed by MTT assay, activated caspase 3/7 measurement, and/or nucleosome quantification. In addition, the proteome of INS-1E cells was assessed by bi-dimensional electrophoresis (2-DE). RESULTS: The extracts differed in terms of antioxidant activity and stevioside content. As expected, 24 h exposure to palmitate resulted in a significant decrease of INS-1E cell metabolic activity, which was counteracted by all the Stevia extracts at 200 µg/ml. However, varying stevioside only concentrations were not able to protect palmitate-exposed cells. ST3 extract was also tested with human islets, showing an anti-apoptotic effect. Proteome analysis showed several changes in INS-1E beta-cells exposed to ST3, mainly at the endoplasmic reticulum and mitochondrial levels. CONCLUSIONS: Stevia rebaudiana leaf extracts have beneficial effects on beta cells exposed to lipotoxicity; this effect does not seem to be mediated by stevioside alone (suggesting a major role of the leaf phytocomplex as a whole) and might be due to actions on the endoplasmic reticulum and the mitochondrion.


Subject(s)
Diabetes Mellitus, Type 2 , Stevia , Antioxidants/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Flavonoids , Humans , Plant Extracts/pharmacology
20.
Pharmaceutics ; 13(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34575477

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) agonists are being used for the treatment of type 2 diabetes (T2D) and may have beneficial effects on the pancreatic ß-cells. Here, we evaluated the effects of GLP-1R agonism on insulin secretory granule (ISG) dynamics in primary ß-cells isolated from human islets exposed to palmitate-induced lipotoxic stress. Islets cells were exposed for 48 h to 0.5 mM palmitate (hereafter, 'Palm') with or without the addition of a GLP-1 agonist, namely 10 nM exendin-4 (hereafter, 'Ex-4'). Dissociated cells were first transfected with syncollin-EGFP in order to fluorescently mark the ISGs. Then, by applying a recently established spatiotemporal correlation spectroscopy technique, the average structural (i.e., size) and dynamic (i.e., the local diffusivity and mode of motion) properties of ISGs are extracted from a calculated imaging-derived Mean Square Displacement (iMSD) trace. Besides defining the structural/dynamic fingerprint of ISGs in human cells for the first time, iMSD analysis allowed to probe fingerprint variations under selected conditions: namely, it was shown that Palm affects ISGs dynamics in response to acute glucose stimulation by abolishing the ISGs mobilization typically imparted by glucose and, concomitantly, by reducing the extent of ISGs active/directed intracellular movement. By contrast, co-treatment with Ex-4 normalizes ISG dynamics, i.e., re-establish ISG mobilization and ability to perform active transport in response to glucose stimulation. These observations were correlated with standard glucose-stimulated insulin secretion (GSIS), which resulted in being reduced in cells exposed to Palm but preserved in cells concomitantly exposed to 10 nM Ex-4. Our data support the idea that GLP-1R agonism may exert its beneficial effect on human ß-cells under metabolic stress by maintaining ISGs' proper intracellular dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL