Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Risk Anal ; 37(7): 1358-1374, 2017 07.
Article in English | MEDLINE | ID: mdl-27664001

ABSTRACT

For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available.

2.
Regul Toxicol Pharmacol ; 76: 217-20, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26853733

ABSTRACT

To derive an acute TTC threshold, the correlation between Allowable Daily Intakes (ADIs, chronic values) and Acute Reference Doses (ARfDs) of pesticides evaluated in the EU was investigated and their distributions were compared. The correlation between ARfDs and ADIs was significant (p = 0.01), but weak (r(2) = 0.051). Consequently, using this approach to derive acute TTC values does not seem valid. Therefore, the distributions of ARfDs and ADIs were compared directly, in order to extrapolate from chronic to acute TTC values. This comparison made for the combined Cramer structural class II and III pesticides showed a ratio ARfD/ADI of approximately 3 at the fifth percentile of the distributions. Based on these results, it is justified to propose a TTC for acute effects for Cramer III substances by multiplying the Cramer class III TTC threshold of 90 µg/person/day with a factor 3. This leads to an acute TTC threshold based on the Munro dataset for Cramer class III substances of 270 µg/person/day.


Subject(s)
Environmental Exposure/adverse effects , Food Contamination , Pesticides/adverse effects , Databases, Factual , Dose-Response Relationship, Drug , Humans , Models, Statistical , No-Observed-Adverse-Effect Level , Risk Assessment , Threshold Limit Values , Toxicity Tests
3.
Regul Toxicol Pharmacol ; 67(2): 146-56, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23792263

ABSTRACT

Within the EU FP6 project OSIRIS approaches to Integrated Testing Strategies (ITSs) were developed, with the aim to facilitate the use of non-test and non-animal testing information in regulatory risk assessment of chemicals. This paper describes an analytical Weight-of-Evidence (WoE) approach to an ITS for the endpoint of skin sensitisation. It specifically addresses the European chemicals legislation REACH, but the concept is readily applicable to ITS and WoE procedures in other regulatory frameworks, and for other toxicological endpoints. Bayesian statistics are applied to estimate the reliability of a conclusion on the sensitisation potential of a chemical, combining evidence from different information sources such as QSAR model predictions, in vitro and in vivo test results. The methodology allows for adaptation of the weight of individual information sources to account for the different levels of reliability of the individual ITS components. The calculated reliability of the WoE conclusion gives an objective, transparent and reproducible measure to decide if the information requirements for data evaluation are satisfied. Furthermore, in case the WoE is not sufficient, it gives the possibility to evaluate a priori if and how it will be possible to fulfil the information requirements with additional tests and/or model predictions.


Subject(s)
Models, Statistical , Skin Irritancy Tests/methods , Animal Testing Alternatives , Bayes Theorem , Dermatitis, Contact , Hazardous Substances/toxicity , Quantitative Structure-Activity Relationship , Risk Assessment
4.
Regul Toxicol Pharmacol ; 67(2): 136-45, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23385135

ABSTRACT

Chemical substances policies in Europe are aiming towards chemical safety and at the same time a reduction in animal testing. These goals are alleged to be reachable by mining as many relevant data as possible, evaluate these data with regard to validity, reliability and relevance, and use of these data in so-called Integrated Testing Strategies (ITS). This paper offers an overview of four human health endpoints that were part of the EU-funded OSIRIS project, aiming to develop ITS fit for the EU chemicals legislation REACH. The endpoints considered cover their categorical as well as continuous characteristics: skin sensitisation, repeated dose toxicity, mutagenicity and carcinogenicity. Detailed papers are published elsewhere in this volume. The stepwise ITS approach developed takes advantage of existing information, groups information about similar substances and integrates exposure considerations. The different and possibly contradictory information is weighted and the respective uncertainties taken into account in a weight of evidence (WoE) approach. In case of data gaps, the ITS proposes the most appropriate method to acquire the missing information. Each building block for the ITS, i.e. each in vivo test, in vitro test, (Q)SAR model or human evidence, is evaluated with regard to quality.


Subject(s)
Hazardous Substances/toxicity , Toxicity Tests/methods , Animal Testing Alternatives , Animals , Humans , Risk Assessment
5.
Regul Toxicol Pharmacol ; 67(2): 170-81, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23357514

ABSTRACT

Risk assessment of chemicals usually implies data evaluation of in vivo tests in rodents to conclude on their hazards. The FP7 European project OSIRIS has developed integrated testing strategies (ITS) for relevant toxicological endpoints to avoid unnecessary animal testing and thus to reduce time and costs. This paper describes the implementation of ITS mutagenicity and carcinogenicity in the public OSIRIS webtool. The data requirements of REACH formed the basis for these ITS. The main goal was to implement procedures to reach a conclusion on the adequacy and validity of available data. For the mutagenicity ITS a quantitative Weight of Evidence approach based on Bayesian statistics was developed and implemented. The approach allows an overall quality assessment of all available data for the five types of mutagenicity data requirements: in vitro bacterial mutagenicity, in vitro and in vivo chromosome aberration, in vitro and in vivo mammalian mutagenicity. For the carcinogenicity ITS a tool was developed to evaluate the quality of studies not conforming (entirely) to guidelines. In a tiered approach three quality aspects are assessed: documentation (reliability), study design (adequacy) and scope of examination (validity). The quality assessment is based on expert and data driven quantitative Weight of Evidence.


Subject(s)
Carcinogens/toxicity , Mutagens/toxicity , Software , Animals , Carcinogenicity Tests , Mutagenicity Tests , Risk Assessment
6.
Regul Toxicol Pharmacol ; 67(2): 157-69, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23439429

ABSTRACT

In the FP6 European project OSIRIS, Integrated Testing Strategies (ITSs) for relevant toxicological endpoints were developed to avoid new animal testing and thus to reduce time and costs. The present paper describes the development of an ITS for repeated-dose toxicity called RepDose ITS which evaluates the conditions under which in vivo non-guideline studies are reliable. In a tiered approach three aspects of these "non-guideline" studies are assessed: the documentation of the study (reliability), the quality of the study design (adequacy) and the scope of examination (validity). The reliability is addressed by the method "Knock-out criteria", which consists of four essential criteria for repeated-dose toxicity studies. A second tool, termed QUANTOS (Quality Assessment of Non-guideline Toxicity Studies), evaluates and weights the adequacy of the study by using intra-criterion and inter-criteria weighting. Finally, the Coverage approach calculates a probability that the detected Lowest-Observed-Effect-Level (LOEL) is similar to the LOEL of a guideline study dependent on the examined targets and organs of the non-guideline study. If the validity and adequacy of the non-guideline study are insufficient for risk assessment, the ITS proposes to apply category approach or the Threshold of Toxicological Concern (TTC) concept, and only as a last resort new animal-testing.


Subject(s)
Toxicity Tests/methods , Animals , Hazardous Substances/toxicity , Risk Assessment , Software
7.
Regul Toxicol Pharmacol ; 62(1): 23-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22178169

ABSTRACT

Quantitative Property Property Relationships (QPPRs) for human and rat blood:air partition coefficients (PBAs) have been derived, based on vapour pressure (Log(VP)), the octanol:water partition coefficient (Log(K(OW))) and molecular weight (MW), using partial least squares multilinear modelling. These parameters are all included in the standard data to be submitted under REACH. The chemical dataset consisted of volatile organic chemicals, principally aliphatic hydrocarbons, benzene derivatives with one aromatic ring, and ethers, with and without halogen atoms. Other chemicals represented were cyclic hydrocarbons and carbonic acid esters. Separate rat and human models were derived, as well as mixed ones. Log(VP) and Log(K(OW)) contributed most to the prediction of Log(PBA) in the three-parameter model, while the contribution of MW was relatively small. Still, the three-parameter model differed significantly from the two-parameter model and performed better. Its performance was comparable to that of models published in public literature, which are based on more complex molecular parameters or on measured olive:oil air and saline/water:air partition coefficients. Since, based on the available data for humans, rats, mice, dogs and rabbits, existence of interspecies differences of PBAs cannot be clearly excluded, the use of separate models for each species is advisable. Concluding, the three-parameter human model Log(PBA)=6.96-1.04 Log(VP)-0.533 Log(K(OW))-0.00495MW and the three-parameter rat model 6.16-0.888 Log(VP)-0.521 Log(K(OW))-0.00201MW provide robust and reliable models for predicting PBA values of volatile organic chemicals using commonly available chemical properties of molecules.


Subject(s)
Air , Blood , Models, Biological , Volatile Organic Compounds/chemistry , 1-Octanol/chemistry , Animals , Humans , Hydrocarbons/chemistry , Molecular Weight , Quantitative Structure-Activity Relationship , Rats , Vapor Pressure , Water/chemistry
8.
Regul Toxicol Pharmacol ; 57(2-3): 200-9, 2010.
Article in English | MEDLINE | ID: mdl-20178823

ABSTRACT

Most QSARs for dermal absorption predict the permeability coefficient, K(p), of a molecule, which is valid for infinite dose conditions. In practice, dermal exposure mostly occurs under finite dose conditions. Therefore, a simple model to predict finite dose dermal absorption from infinite dose data (K(p) and lag time) and the stratum corneum/water partition coefficient (K(SC,W)) was developed. To test the model, a series of in vitro dermal absorption experiments was performed under both infinite and finite dose conditions using acetic acid, benzoic acid, bis(2-ethylhexyl)phthalate, butoxyethanol, cortisone, decanol, diazinone, 2,4-dichlorophenol, ethacrynic acid, linolenic acid, octylparaben, oleic acid, propylparaben, salicylic acid and testosterone. For six substances, the predicted relative dermal absorption was not statistically different from the measured value. For all other substances, measured absorption was overpredicted by the model, but most of the overpredictions were still below the European default absorption value. In conclusion, our finite dose prediction model provides a useful and cost-effective estimate of dermal absorption, to be used in risk assessment for non-volatile substances dissolved in water at non-irritating concentrations.


Subject(s)
Databases, Factual , Models, Biological , Skin Absorption/physiology , Skin/metabolism , Adult , Dose-Response Relationship, Drug , Female , Hormones/chemistry , Hormones/pharmacokinetics , Humans , In Vitro Techniques , Lipids/chemistry , Lipids/pharmacokinetics , Middle Aged , Organic Chemicals/chemistry , Organic Chemicals/pharmacokinetics , Prognosis , Quantitative Structure-Activity Relationship , Risk Assessment
9.
ChemSusChem ; 13(12): 3212-3221, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32220058

ABSTRACT

Three dipolar aprotic solvents were designed to possess high dipolarity and low toxicity: N,N,N',N'-tetrabutylsuccindiamide (TBSA), N,N'-diethyl-N,N'-dibutylsuccindiamide (EBSA), and N,N'-dimethyl-N,N'-dibutylsuccindiamide (MBSA). They were synthesized catalytically by using a K60 silica catalyst in a solventless system. Their water immiscibility stands out as an unusual and useful property for dipolar aprotic solvents. They were tested in a model Heck reaction, metal-organic framework syntheses, and a selection of polymer solubility experiments in which their performances were found to be comparable to traditional solvents. Furthermore, MBSA was found to be suitable for the production of an industrially relevant membrane from polyethersulfone. An integrated approach involving in silico analysis based on available experimental information, prediction model outcomes and read across data, as well as a panel of in vitro reporter gene assays covering a broad range of toxicological endpoints was used to assess toxicity. These in silico and in vitro tests suggested no alarming indications of toxicity in the new solvents.

10.
Regul Toxicol Pharmacol ; 54(3): 221-8, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19393281

ABSTRACT

Quantification of skin absorption is an essential step in reducing the uncertainty of dermal risk assessment. Data from literature indicate that the relative dermal absorption of substances is dependent on dermal loading. Therefore, an internal exposure calculated with absorption data determined at a dermal loading not comparable to the actual loading may lead to a wrong assessment of the actual health risk. To investigate the relationship between dermal loading and relative absorption in a quantitative manner, 138 dermal publicly available absorption experiments with 98 substances were evaluated (87 in vitro, 51 in vivo; molecular weight between 40 and 950, logP between -5 and 13), with dermal loading ranging mostly between 0.001 and 10mg/cm(2). In 87 experiments (63%) an inverse relationship was observed between relative dermal absorption and dermal loading, with an average decrease of factor 33+/-69. Known skin irritating and volatile substances less frequently showed an inverse relationship between dermal loading and relative absorption.


Subject(s)
Skin Absorption , Skin Irritancy Tests/methods , Animals , Humans , Inorganic Chemicals/pharmacokinetics , Inorganic Chemicals/toxicity , Organic Chemicals/pharmacokinetics , Organic Chemicals/toxicity , Risk Assessment
11.
Food Chem Toxicol ; 132: 110598, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31228601

ABSTRACT

Polyoxymethylene (POM) is a polymer of formaldehyde used inter alia for kitchenware and food processing machines. By migration into food, consumers may be exposed to small additional amounts of formaldehyde in food. In order to address such potential exposures, Specific Migration Limits are derived using all studies with oral exposure in mammals and birds. The assessment is not only based on local irritation observed in a 2-year rat study that has previously served to calculate acceptable exposure levels, but also on systemic effects, namely on effects on the kidney in adult rats and testes in birds before sexual maturity. At the relatively high oral exposure levels (up to 2000 ppm in drinking water) long-term effects caused by formic acid, the first step metabolite of formaldehyde, such as acidosis, cannot be excluded. The lowest Specific Migration Limit of 2.74 mg/dm2, corresponding to 16.5 mg formaldehyde/kg food, is based upon kidney effects in rats, leading to potential exposures that range between 2900 and 4400 times below the endogenous turnover of formaldehyde. Lastly, a recent migration study with POM showed that migration of formaldehyde into food simulants is over an order of magnitude below the lowest Specific Migration Limit derived herein.


Subject(s)
Dietary Exposure/standards , Food Contamination , Formaldehyde/standards , Administration, Oral , Animals , Chickens , Dogs , Formaldehyde/metabolism , Formaldehyde/toxicity , Kidney/drug effects , Leukocyte Count , Male , No-Observed-Adverse-Effect Level , Quail , Rats, Sprague-Dawley , Rats, Wistar , Resins, Synthetic/chemistry , Risk Assessment , Species Specificity , Stomach/drug effects , Testis/drug effects
12.
EFSA J ; 15(6): e04873, 2017 Jun.
Article in English | MEDLINE | ID: mdl-32625532

ABSTRACT

This guidance on the assessment of dermal absorption has been developed to assist notifiers, users of test facilities and Member State authorities on critical aspects related to the setting of dermal absorption values to be used in risk assessments of active substances in Plant Protection Products (PPPs). It is based on the 'scientific opinion on the science behind the revision of the guidance document on dermal absorption' issued in 2011 by the EFSA Panel on Plant Protection Products and their Residues (PPR). The guidance refers to the EFSA PPR opinion in many instances. In addition, the first version of this guidance, issued in 2012 by the EFSA PPR Panel, has been revised in 2017 on the basis of new available data on human in vitro dermal absorption for PPPs and wherever clarifications were needed. Basic details of experimental design, available in the respective test guidelines and accompanying guidance for the conduct of studies, have not been addressed but recommendations specific to performing and interpreting dermal absorption studies with PPPs are given. Issues discussed include a brief description of the skin and its properties affecting dermal absorption. To facilitate use of the guidance, flow charts are included. Guidance is also provided, for example, when there are no data on dermal absorption for the product under evaluation. Elements for a tiered approach are presented including use of default values, data on closely related products, in vitro studies with human skin (regarded to provide the best estimate), data from experimental animals (rats) in vitro and in vivo, and the so called 'triple pack' approach. Various elements of study design and reporting that reduce experimental variation and aid consistent interpretation are presented. A proposal for reporting data for assessment reports is also provided. The issue of nanoparticles in PPPs is not addressed. Data from volunteer studies have not been discussed since their use is not allowed in EU for risk assessment of PPPs.

13.
Environ Int ; 91: 150-60, 2016 May.
Article in English | MEDLINE | ID: mdl-26949868

ABSTRACT

The fast penetration of nanoproducts on the market under conditions of significant uncertainty of their environmental properties and risks to humans creates a need for companies to assess sustainability of their products. Evaluation of the potential benefits and risks to build a coherent story for communication with clients, authorities, consumers, and other stakeholders is getting to be increasingly important, but SMEs often lack the knowledge and expertise to assess risks and communicate them appropriately. This paper introduces LICARA nanoSCAN, a modular web based tool that supports SMEs in assessing benefits and risks associated with new or existing nanoproducts. This tool is unique because it is scanning both the benefits and risks over the nanoproducts life cycle in comparison to a reference product with a similar functionality in order to enable the development of sustainable and competitive nanoproducts. SMEs can use data and expert judgment to answer mainly qualitative and semi-quantitative questions as a part of tool application. Risks to public, workers and consumers are assessed, while the benefits are evaluated for economic, environmental and societal opportunities associated with the product use. The tool provides an easy way to visualize results as well as to identify gaps, missing data and associated uncertainties. The LICARA nanoSCAN has been positively evaluated by several companies and was tested in a number of case studies. The tool helps to develop a consistent and comprehensive argument on the weaknesses and strengths of a nanoproduct that may be valuable for the communication with authorities, clients and among stakeholders in the value chain. LICARA nanoSCAN identifies areas for more detailed assessments, product design improvement or application of risk mitigation measures.


Subject(s)
Nanostructures , Risk Assessment , Software , Humans , Uncertainty
14.
Reprod Toxicol ; 55: 11-9, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25461900

ABSTRACT

Previously we showed a battery consisting of CALUX transcriptional activation assays, the ReProGlo assay, and the embryonic stem cell test, and zebrafish embryotoxicity assay as 'apical' tests to correctly predict developmental toxicity for 11 out of 12 compounds, and to explain the one false negative [7]. Here we report on applying this battery within the context of grouping and read across, put forward as a potential tool to fill data gaps and avoid animal testing, to distinguish in vivo non- or weak developmental toxicants from potent developmental toxicants within groups of structural analogs. The battery correctly distinguished 2-methylhexanoic acid, monomethyl phthalate, and monobutyltin trichloride as non- or weak developmental toxicants from structurally related developmental toxicants valproic acid, mono-ethylhexyl phthalate, and tributyltin chloride, respectively, and, therefore, holds promise as a biological verification model in grouping and read across approaches. The relevance of toxicokinetic information is indicated.


Subject(s)
Animal Testing Alternatives , Teratogens/toxicity , Toxicity Tests/methods , Animals , Cell Line , Cells, Cultured , Embryo, Nonmammalian/drug effects , Embryonic Stem Cells/drug effects , Genes, Reporter , Humans , Mice , Receptors, Estrogen/metabolism , Reproduction , Teratogens/classification , Teratogens/pharmacokinetics , Toxicokinetics , Zebrafish/embryology
15.
Reprod Toxicol ; 55: 95-103, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25527862

ABSTRACT

There is a great need for alternative testing methods for reproductive toxicants that are practical, fast, cost-effective and easy to interpret. Previously we followed a pragmatic approach using readily available tests, which was successful in predicting reproductive toxicity of chemicals [13]. This initial battery still contained apical tests and is fairly complex and low in its throughput. The current study aimed to simplify this screening battery using a mechanistic approach and a panel of high throughput CALUX reporter gene assays. A mechanistic approach was taken to validate this high throughput test battery. To this end it was challenged with two preselected sets of chemicals addressing two major apical effect classes relevant in reproductive toxicity. We found selectivity in this battery in that 82% of the compounds inducing reproductive organ deformities were predicted correctly, while for compounds inducing neural tube defects this was the case in 47% only. This is consistent with the mechanisms of toxicity covered in the battery. The most informative assays in the battery were ERalpha CALUX to measure estrogenicity and the AR-anti CALUX assay to measure androgen receptor antagonism.


Subject(s)
High-Throughput Screening Assays , Teratogens/toxicity , Androgen Receptor Antagonists/toxicity , Cell Line , Estrogen Receptor alpha/metabolism , Estrogens/toxicity , Genitalia/drug effects , Humans , Neural Tube Defects/chemically induced , Receptors, Androgen/metabolism
16.
Regul Toxicol Pharmacol ; 50(3): 400-11, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18331772

ABSTRACT

The increasing use of tissue dosimetry estimated using pharmacokinetic models in chemical risk assessments in various jurisdictions necessitates the development of internationally recognized good modelling practice (GMP). These practices would facilitate sharing of models and model evaluations and consistent applications in risk assessments. Clear descriptions of good practices for (1) model development i.e., research and analysis activities, (2) model characterization i.e., methods to describe how consistent the model is with biology and the strengths and limitations of available models and data, such as sensitivity analyses, (3) model documentation, and (4) model evaluation i.e., independent review that will assist risk assessors in their decisions of whether and how to use the models, and also model developers to understand expectations for various purposes e.g., research versus application in risk assessment. Next steps in the development of guidance for GMP and research to improve the scientific basis of the models are described based on a review of the current status of the application of physiologically based pharmacokinetic (PBPK) models in risk assessments in Europe, Canada, and the United States at the International Workshop on the Development of GMP for PBPK Models in Greece on April 27-29, 2007.


Subject(s)
Models, Statistical , Pharmacokinetics , Risk Assessment/statistics & numerical data , Risk Assessment/standards , Animals , Humans , Legislation, Drug , Quantitative Structure-Activity Relationship , Risk Assessment/legislation & jurisprudence , Risk Assessment/trends
17.
Regul Toxicol Pharmacol ; 48(1): 87-92, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17367906

ABSTRACT

The in vitro dermal absorption kinetics of didecyldimethylammonium chloride (DDAC) was studied after single and multiple exposure. In addition, the influence of biocidal formulations on the absorption of DDAC was investigated. Following dermal exposure to DDAC in aqueous solution, less than 0.5% of the applied dose reached the receptor fluid after 48h. The apparent permeability coefficient (K(p)) was 5+/-1cm/h x 10(-6) for concentrations <12.5mg/mL, and 12+/-3 cm/h x 10(-6) for concentrations >or=12.5 mg/mL, suggesting that DDAC decreases the skin barrier function. DDAC distributed readily into the stratum corneum, but the dermis appeared to be the main barrier for DDAC penetration. Multiple dosing of DDAC increased its flux across the skin, when applied in high concentrations (>11 mg/mL). However, the amount of DDAC reaching the receptor fluid remained low (<1% over a 48 h period). Selected biocidal formulations tended to reduce DDAC skin absorption. The degree of reduction appeared to be correlated to the amount of aldehydes present. Based on the comparison of the distribution of DDAC in full-thickness skin and epidermal membranes, we conclude that approximately one-third of the DDAC measured in the full-thickness membranes resides in the dermis. As a reasonable worst case assumption, this fraction could be considered systemically available when estimating the daily systemic body burden of DDAC.


Subject(s)
Disinfectants/administration & dosage , Quaternary Ammonium Compounds/pharmacokinetics , Skin Absorption/drug effects , Administration, Cutaneous , Cells, Cultured , Chemistry, Pharmaceutical/methods , Disinfectants/pharmacokinetics , Humans , Kinetics , Permeability , Quaternary Ammonium Compounds/therapeutic use , Tissue Distribution
18.
Regul Toxicol Pharmacol ; 43(1): 76-84, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16099566

ABSTRACT

The dermal route of exposure is important in worker exposure to biocidal products. Many biocidal active substances which are used on a daily basis may decrease the barrier function of the skin to a larger extent than current risk assessment practice addresses, due to possible skin effects of repeated exposure. The influence of repeated and single exposure to representative biocidal active substances on the skin barrier was investigated in vitro. The biocidal active substances selected were alkyldimethylbenzylammonium chloride (ADBAC), boric acid, deltamethrin, dimethyldidecylammonium chloride (DDAC), formaldehyde, permethrin, piperonyl butoxide, sodium bromide, and tebuconazole. Of these nine compounds, only the quaternary ammonium chlorides ADBAC and DDAC had a clear and consistent influence on skin permeability of the marker compounds tritiated water and [(14)C]propoxur. For these compounds, repeated exposure increased skin permeability more than single exposure. At high concentrations the difference between single and repeated exposure was quantitatively significant: repeated exposure to 300 mg/L ADBAC increased skin permeability two to threefold in comparison to single exposure. Therefore, single and repeated exposure to specific biocidal products may significantly increase skin permeability, especially when used undiluted.


Subject(s)
Benzalkonium Compounds/pharmacology , Detergents/pharmacology , Quaternary Ammonium Compounds/pharmacology , Skin Physiological Phenomena/drug effects , Adult , Benzalkonium Compounds/administration & dosage , Carbon Radioisotopes , Detergents/administration & dosage , Deuterium Oxide , Dose-Response Relationship, Drug , Female , Humans , In Vitro Techniques , Middle Aged , Perfusion , Permeability/drug effects , Propoxur/pharmacology , Quaternary Ammonium Compounds/administration & dosage , Skin Absorption/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL