Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Diabetologia ; 66(2): 367-375, 2023 02.
Article in English | MEDLINE | ID: mdl-36394644

ABSTRACT

AIMS/HYPOTHESIS: The role of beta cell mass in the balance of glucose control and hypoglycaemic burden in people with type 1 diabetes is unclear. We applied positron emission tomography (PET) imaging with radiolabelled exendin to compare beta cell mass among people with type 1 diabetes and either low glucose variability (LGV) or high glucose variability (HGV). METHODS: All participants with either LGV (n=9) or HGV (n=7) underwent a mixed-meal tolerance test to determine beta cell function and wore a blinded continuous glucose monitor for a week. After an i.v. injection with [68Ga]Ga-NODAGA-exendin-4, PET images were acquired for the quantification of pancreatic uptake of radiolabelled exendin. The mean standardised uptake value (SUVmean) of the pancreas was used to determine the amount of beta cell mass. RESULTS: Participants with LGV had lower HbA1c (46.0 mmol/mol [44.5-52.5] [6.4% (6.3-7)] vs 80 mmol/mol [69.0-110] [9.5% (8.5-12.2)], p=0.001) and higher time in range (TIR) (75.6% [73.5-90.3] vs 38.7% [25.1-48.5], p=0.002) than those with HGV. The SUVmean of the pancreas was higher for the LGV than for the HGV group (5.1 [3.6-5.6] vs 2.9 [2.1-3.4], p=0.008). The AUCC-peptide:AUCglucose ratio was numerically, but not statistically, higher in the LGV compared with the HGV group (2.7×10-2 [6.2×10-4-5.3×10-2] vs 9.3×10-4 [4.7×10-4-5.2×10-3], p=0.21). SUVmean correlated with the AUCC-peptide:AUCglucose ratio (Pearson r=0.64, p=0.01), as well as with the TIR (r=0.64, p=0.01) and the SD of interstitial glucose levels (r=-0.66, p=0.007). CONCLUSION/INTERPRETATION: Our data show higher beta cell mass in people with type 1 diabetes and LGV than in those with HGV, independent of beta cell function.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/metabolism , C-Peptide/metabolism , Glycemic Control , Pancreas/metabolism , Blood Glucose/metabolism , Glucose/metabolism
2.
J Physiol ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38051503

ABSTRACT

Twenty-four hour rhythmicity in whole-body substrate metabolism, skeletal muscle clock gene expression and mitochondrial respiration is compromised upon insulin resistance. With exercise training known to ameliorate insulin resistance, our objective was to test if exercise training can reinforce diurnal variation in whole-body and skeletal muscle metabolism in men with insulin resistance. In a single-arm longitudinal design, 10 overweight and obese men with insulin resistance performed 12 weeks of high-intensity interval training recurrently in the afternoon (between 14.00 and 18.00 h) and were tested pre- and post-exercise training, while staying in a metabolic research unit for 2 days under free-living conditions with regular meals. On the second days, indirect calorimetry was performed at 08.00, 13.00, 18.00, 23.00 and 04.00 h, muscle biopsies were taken from the vastus lateralis at 08.30, 13.30 and 23.30 h, and blood was drawn at least bi-hourly over 24 h. Participants did not lose body weight over 12 weeks, but improved body composition and exercise capacity. Exercise training resulted in reduced 24-h plasma glucose levels, but did not modify free fatty acid and triacylglycerol levels. Diurnal variation of muscle clock gene expression was modified by exercise training with period genes showing an interaction (time × exercise) effect and reduced mRNA levels at 13.00 h. Exercise training increased mitochondrial respiration without inducing diurnal variation. Twenty-four-hour substrate metabolism and energy expenditure remained unchanged. Future studies should investigate alternative exercise strategies or types of interventions (e.g. diet or drugs aiming at improving insulin sensitivity) for their capacity to reinforce diurnal variation in substrate metabolism and mitochondrial respiration. KEY POINTS: Insulin resistance is associated with blunted 24-h flexibility in whole-body substrate metabolism and skeletal muscle mitochondrial respiration, and disruptions in the skeletal muscle molecular circadian clock. We hypothesized that exercise training modifies 24-h rhythmicity in whole-body substrate metabolism and diurnal variation in skeletal muscle molecular clock and mitochondrial respiration in men with insulin resistance. We found that metabolic inflexibility over 24 h persisted after exercise training, whereas mitochondrial respiration increased independent of time of day. Gene expression of Per1-3 and Rorα in skeletal muscle changed particularly close to the time of day at which exercise training was performed. These results provide the rationale to further investigate the differential metabolic impact of differently timed exercise to treat metabolic defects of insulin resistance that manifest at a particular time of day.

3.
Rheumatology (Oxford) ; 61(7): 2999-3009, 2022 07 06.
Article in English | MEDLINE | ID: mdl-34450633

ABSTRACT

OBJECTIVE: Activated synovial fibroblasts are key effector cells in RA. Selectively depleting these based upon their expression of fibroblast activation protein (FAP) is an attractive therapeutic approach. Here we introduce FAP imaging of inflamed joints using 68Ga-FAPI-04 in a RA patient, and aim to assess feasibility of anti-FAP targeted photodynamic therapy (FAP-tPDT) ex vivo using 28H1-IRDye700DX on RA synovial explants. METHODS: Remnant synovial tissue from RA patients was processed into 6 mm biopsies and, from several patients, into primary fibroblast cell cultures. Both were treated using FAP-tPDT. Cell viability was measured in fibroblast cultures and biopsies were evaluated for histological markers of cell damage. Selectivity of the effect of FAP-tPDT was assessed using flow cytometry on primary fibroblasts and co-cultured macrophages. Additionally, one RA patient intravenously received 68Ga-FAPI-04 and was scanned using PET/CT imaging. RESULTS: In the RA patient, FAPI-04 PET imaging showed high accumulation of the tracer in arthritic joints with very low background signal. In vitro, FAP-tPDT induced cell death in primary RA synovial fibroblasts in a light dose-dependent manner. An upregulation of cell damage markers was observed in the synovial biopsies after FAP-tPDT. No significant effects of FAP-tPDT were noted on macrophages after FAP-tPDT of neighbouring fibroblasts. CONCLUSION: In this study the feasibility of selective FAP-tPDT in synovium of rheumatoid arthritis patients ex vivo is demonstrated. Furthermore, this study provides the first indication that FAP-targeted PET/CT can be used to image arthritic joints, an important step towards application of FAP-tPDT as a targeted locoregional therapy for RA.


Subject(s)
Arthritis, Rheumatoid , Photochemotherapy , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Fibroblasts/metabolism , Humans , Positron Emission Tomography Computed Tomography , Synovial Membrane/metabolism
4.
Rheumatology (Oxford) ; 59(12): 3952-3960, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32734285

ABSTRACT

OBJECTIVE: In RA, synovial fibroblasts become activated. These cells express fibroblast activation protein (FAP) and contribute to the pathogenesis by producing cytokines, chemokines and proteases. Selective depletion in inflamed joints could therefore constitute a viable treatment option. To this end, we developed and tested a new therapeutic strategy based on the selective destruction of FAP-positive cells by targeted photodynamic therapy (tPDT) using the anti-FAP antibody 28H1 coupled to the photosensitizer IRDye700DX. METHODS: After conjugation of IRDye700DX to 28H1, the immunoreactive binding and specificity of the conjugate were determined. Subsequently, tPDT efficiency was established in vitro using a 3T3 cell line stably transfected with FAP. The biodistribution of [111In]In-DTPA-28H1 with and without IRDye700DX was assessed in healthy C57BL/6N mice and in C57BL/6N mice with antigen-induced arthritis. The potential of FAP-tPDT to induce targeted damage was determined ex vivo by treating knee joints from C57BL/6N mice with antigen-induced arthritis 24 h after injection of the conjugate. Finally, the effect of FAP-tPDT on arthritis development was determined in mice with collagen-induced arthritis. RESULTS: 28H1-700DX was able to efficiently induce FAP-specific cell death in vitro. Accumulation of the anti-FAP antibody in arthritic knee joints was not affected by conjugation with the photosensitizer. Arthritis development was moderately delayed in mice with collagen-induced arthritis after FAP-tPDT. CONCLUSION: Here we demonstrate the feasibility of tPDT to selectively target and kill FAP-positive fibroblasts in vitro and modulate arthritis in vivo using a mouse model of RA. This approach may have therapeutic potential in (refractory) arthritis.


Subject(s)
Arthritis, Experimental/drug therapy , Fibroblasts/drug effects , Photochemotherapy/methods , 3T3 Cells/drug effects , Animals , Female , Indoles/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Organosilicon Compounds/therapeutic use
5.
Eur J Clin Invest ; 49(7): e13120, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31002171

ABSTRACT

BACKGROUND: Disturbances in adipose tissue glucose uptake may play a role in the pathogenesis of type 2 diabetes, yet its examination by 2-deoxy-2-[18 F]fluorodeoxyglucose ([18 F]FDG) PET/CT is challenged by relatively low uptake kinetics. We tested the hypothesis that performing [18 F]FDG PET/CT during a hypoglycaemic clamp would improve adipose tissue tracer uptake to allow specific comparison of adipose tissue glucose handling between people with or without type 2 diabetes. DESIGN: We enrolled participants with or without diabetes who were at least overweight, to undergo a hyperinsulinaemic hypoglycaemic clamp or a hyperinsulinaemic euglycaemic clamp (n = 5 per group). Tracer uptake was quantified using [18 F]FDG PET/CT. RESULTS: Hypoglycaemic clamping increased [18 F]FDG uptake in visceral adipose tissue of healthy participants (P = 0.002). During hypoglycaemia, glucose uptake in visceral adipose tissue of type 2 diabetic participants was lower as compared to healthy participants (P < 0.0005). No significant differences were observed in skeletal muscle, liver or pancreas. CONCLUSIONS: The present findings indicate that [18 F]FDG PET/CT during a hypoglycaemic clamp provides a promising new research tool to evaluate adipose tissue glucose metabolism. Using this method, we observed a specific impairment in visceral adipose tissue [18 F]FDG uptake in type 2 diabetes, suggesting a previously underestimated role for adipose tissue glucose handling in type 2 diabetes.


Subject(s)
Adipose Tissue/metabolism , Hypoglycemia/diagnostic imaging , Adipose Tissue/diagnostic imaging , Adult , Blood Glucose/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Female , Fluorodeoxyglucose F18/pharmacokinetics , Glucose/administration & dosage , Glucose/pharmacokinetics , Humans , Hypoglycemia/metabolism , Hypoglycemic Agents/administration & dosage , Male , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Sweetening Agents/administration & dosage , Sweetening Agents/pharmacokinetics
6.
J Labelled Comp Radiopharm ; 62(10): 656-672, 2019 08.
Article in English | MEDLINE | ID: mdl-31070270

ABSTRACT

Insulinomas, neuroendocrine tumors arising from pancreatic beta cells, often show overexpression of the glucagon-like peptide-1 receptor. Therefore, imaging with glucagon-like peptide analog exendin-4 can be used for diagnosis and preoperative localization. This review presents an overview of the development and clinical implementation of exendin-based tracers for nuclear imaging, and the potential use of exendin-4 based tracers for optical imaging and therapeutic applications such as peptide receptor radionuclide therapy or targeted photodynamic therapy.


Subject(s)
Diagnostic Imaging/methods , Exenatide/chemistry , Exenatide/therapeutic use , Insulinoma/diagnostic imaging , Insulinoma/therapy , Animals , Humans , Insulinoma/drug therapy , Photochemotherapy
7.
Diabetologia ; 61(12): 2516-2519, 2018 12.
Article in English | MEDLINE | ID: mdl-30284016

ABSTRACT

In this issue of Diabetologia, Alavi and Werner ( https://doi.org/10.1007/s00125-018-4676-1 ) criticise the attempts to use positron emission tomography (PET) for in vivo imaging of pancreatic beta cells, which they consider as 'futile'. In support of this strong statement, they point out the limitations of PET imaging, which they believe render beta cell mass impossible to estimate using this method. In our view, the Alavi and Werner presentation of the technical limitations of PET imaging does not reflect the current state of the art, which leads them to questionable conclusions towards the feasibility of beta cell imaging using this approach. Here, we put forward arguments in favour of continuing the development of innovative technologies enabling in vivo imaging of pancreatic beta cells and concisely present the current state of the art regarding putative technical limitations of PET imaging. Indeed, far from being a 'futile' effort, we demonstrate that beta cell imaging is now closer than ever to becoming a long-awaited clinical reality.


Subject(s)
Insulin-Secreting Cells , Medical Futility , Pancreas , Positron-Emission Tomography
8.
Diabetes ; 73(5): 728-742, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38387030

ABSTRACT

The ß-cell plays a crucial role in the pathogenesis of type 1 diabetes, in part through the posttranslational modification of self-proteins by biochemical processes such as deamidation. These neoantigens are potential triggers for breaking immune tolerance. We report the detection by LC-MS/MS of 16 novel Gln and 27 novel Asn deamidations in 14 disease-related proteins within inflammatory cytokine-stressed human islets of Langerhans. T-cell clones responsive against one Gln- and three Asn-deamidated peptides could be isolated from peripheral blood of individuals with type 1 diabetes. Ex vivo HLA class II tetramer staining detected higher T-cell frequencies in individuals with the disease compared with control individuals. Furthermore, there was a positive correlation between the frequencies of T cells specific for deamidated peptides, insulin antibody levels at diagnosis, and duration of disease. These results highlight that stressed human islets are prone to enzymatic and biochemical deamidation and suggest that both Gln- and Asn-deamidated peptides can promote the activation and expansion of autoreactive CD4+ T cells. These findings add to the growing evidence that posttranslational modifications undermine tolerance and may open the road for the development of new diagnostic and therapeutic applications for individuals living with type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Humans , CD4-Positive T-Lymphocytes , Diabetes Mellitus, Type 1/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Islets of Langerhans/metabolism , Peptides
9.
Obesity (Silver Spring) ; 31(10): 2447-2459, 2023 10.
Article in English | MEDLINE | ID: mdl-37667838

ABSTRACT

Advances in the development of noninvasive imaging techniques have spurred investigations into ectopic lipid deposition in the liver and muscle and its implications in the development of metabolic diseases such as type 2 diabetes. Computed tomography and ultrasound have been applied in the past, though magnetic resonance-based methods are currently considered the gold standard as they allow more accurate quantitative detection of ectopic lipid stores. This review focuses on methodological considerations of magnetic resonance-based methods to image hepatic and muscle fat fractions, and it emphasizes anatomical and morphological aspects and how these may influence data acquisition, analysis, and interpretation.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Proton Magnetic Resonance Spectroscopy , Diabetes Mellitus, Type 2/diagnostic imaging , Liver/diagnostic imaging , Muscles , Lipids
10.
Biology (Basel) ; 12(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37372166

ABSTRACT

Neutrophils might play an important role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D), by contributing to immune dysregulation via a highly inflammatory program called neutrophil extracellular trap (NET) formation or NETosis, involving the extrusion of chromatin entangled with anti-microbial proteins. However, numerous studies reported contradictory data on NET formation in T1D. This might in part be due to the inherent heterogeneity of the disease and the influence of the disease developmental stage on neutrophil behavior. Moreover, there is a lack of a standardized method to measure NETosis in an unbiased and robust manner. In this study, we employed the Incucyte® ZOOM live-cell imaging platform to study NETosis levels in various subtypes of adult and pediatric T1D donors compared to healthy controls (HC) at baseline and in response to phorbol-myristate acetate (PMA) and ionomycin. Firstly, we determined that the technique allows for an operator-independent and automated quantification of NET formation across multiple time points, which showed that PMA and ionomycin induced NETosis with distinct kinetic characteristics, confirmed by high-resolution microscopy. NETosis levels also showed a clear dose-response curve to increasing concentrations of both stimuli. Overall, using Incucyte® ZOOM, no aberrant NET formation was observed over time in the different subtypes of T1D populations, irrespective of age, compared to HC. These data were corroborated by the levels of peripheral NET markers in all study participants. The current study showed that live-cell imaging allows for a robust and unbiased analysis and quantification of NET formation in real-time. Peripheral neutrophil measures should be complemented with dynamic quantification of NETing neutrophils to make robust conclusions on NET formation in health and disease.

11.
Cells ; 12(9)2023 05 05.
Article in English | MEDLINE | ID: mdl-37174719

ABSTRACT

BACKGROUND AND AIMS: Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by a T-cell-mediated destruction of the pancreatic insulin-producing beta cells. A growing body of evidence suggests that abnormalities in neutrophils and neutrophil extracellular trap (NET) formation (NETosis) are associated with T1D pathophysiology. However, little information is available on whether these changes are primary neutrophil defects or related to the environmental signals encountered during active disease. METHODS: In the present work, the NET proteome (NETome) of phorbol 12-myristate 13-acetate (PMA)- and ionomycin-stimulated neutrophils from people with established T1D compared to healthy controls (HC) was studied by proteomic analysis. RESULTS: Levels of NETosis, in addition to plasma levels of pro-inflammatory cytokines and NET markers, were comparable between T1D and HC subjects. However, the T1D NETome was distinct from that of HC in response to both stimuli. Quantitative analysis revealed that the T1D NETome was enriched in proteins belonging to metabolic pathways (i.e., phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and UTP-glucose-1-phosphate uridylyltransferase). Complementary metabolic profiling revealed that the rate of extracellular acidification, an approximate measure for glycolysis, and mitochondrial respiration were similar between T1D and HC neutrophils in response to both stimuli. CONCLUSION: The NETome of people with established T1D was enriched in metabolic proteins without an apparent alteration in the bio-energetic profile or dysregulated NETosis. This may reflect an adaptation mechanism employed by activated T1D neutrophils to avoid impaired glycolysis and consequently excessive or suboptimal NETosis, pivotal in innate immune defence and the resolution of inflammation.


Subject(s)
Diabetes Mellitus, Type 1 , Extracellular Traps , Humans , Extracellular Traps/metabolism , Diabetes Mellitus, Type 1/metabolism , Proteome/metabolism , Proteomics , Neutrophils/metabolism
12.
J Clin Endocrinol Metab ; 109(1): 183-196, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37474341

ABSTRACT

CONTEXT: Validated assays to measure autoantigen-specific T-cell frequency and phenotypes are needed for assessing the risk of developing diabetes, monitoring disease progression, evaluating responses to treatment, and personalizing antigen-based therapies. OBJECTIVE: Toward this end, we performed a technical validation of a tetramer assay for HLA-DRA-DRB1*04:01, a class II allele that is strongly associated with susceptibility to type 1 diabetes (T1D). METHODS: HLA-DRA-DRB1*04:01-restricted T cells specific for immunodominant epitopes from islet cell antigens GAD65, IGRP, preproinsulin, and ZnT8, and a reference influenza epitope, were enumerated and phenotyped in a single staining tube with a tetramer assay. Single and multicenter testing was performed, using a clone-spiked specimen and replicate samples from T1D patients, with a target coefficient of variation (CV) less than 30%. The same assay was applied to an exploratory cross-sectional sample set with 24 T1D patients to evaluate the utility of the assay. RESULTS: Influenza-specific T-cell measurements had mean CVs of 6% for the clone-spiked specimen and 11% for T1D samples in single-center testing, and 20% and 31%, respectively, for multicenter testing. Islet-specific T-cell measurements in these same samples had mean CVs of 14% and 23% for single-center and 23% and 41% for multicenter testing. The cross-sectional study identified relationships between T-cell frequencies and phenotype and disease duration, sex, and autoantibodies. A large fraction of the islet-specific T cells exhibited a naive phenotype. CONCLUSION: Our results demonstrate that the assay is reproducible and useful to characterize islet-specific T cells and identify correlations between T-cell measures and clinical traits.


Subject(s)
Diabetes Mellitus, Type 1 , Influenza, Human , Humans , Diabetes Mellitus, Type 1/diagnosis , Cross-Sectional Studies , HLA-DR alpha-Chains , T-Lymphocytes
13.
Diabetes ; 72(7): 898-907, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37068261

ABSTRACT

Intrahepatic transplantation of islets of Langerhans (ITx) is a treatment option for individuals with complicated type 1 diabetes and profoundly unstable glycemic control, but its therapeutic success is hampered by deterioration of graft function over time. To improve ITx strategies, technologies to noninvasively monitor the fate and survival of transplanted islets over time are of great potential value. We used [68Ga]Ga-NODAGA-exendin-4 (68Ga-exendin) positron emission tomography (PET)/computed tomography (CT) imaging to demonstrate the feasibility of quantifying ß-cell mass in intrahepatic islet grafts in 13 individuals with type 1 diabetes, nine after ITx with functional islet grafts and four control patients not treated with ITx. ß-Cell function was measured by mixed-meal tolerance test. With dynamic 68Ga-exendin PET/CT images, we determined tracer accumulation in hepatic hotspots, and intrahepatic fat was assessed using MRI and spectroscopy. Quantification of hepatic hotspots showed a significantly higher uptake of 68Ga-exendin in the ITx group compared with the control group (median 0.55 [interquartile range 0.51-0.63] vs. 0.43 [0.42-0.45]). GLP-1 receptor expression was found in transplanted islets by immunohistochemistry. Intrahepatic fat was not detected in a majority of the individuals. Our study provides the first clinical evidence that radiolabeled exendin imaging can be used to monitor viable transplanted islets after intraportal ITx. ARTICLE HIGHLIGHTS: This clinical study researched the potential of radiolabeled exendin to follow the fate and survival of intrahepatic islet grafts. Is it feasible to quantitatively detect intrahepatic islet transplants with [68Ga]Ga-NODAGA-exendin-4 (68Ga-exendin) positron emission tomography (PET) imaging? Our study findings indicate that the imaging technique 68Ga-exendin PET can be used to monitor viable islet mass after intrahepatic islet transplantation in humans. Alongside functional measures, 68Ga-exendin PET imaging could significantly aid in the evaluation of strategies designed to improve islet engraftment, survival, and function.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Humans , Islets of Langerhans Transplantation/methods , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetes Mellitus, Type 1/surgery , Exenatide , Positron Emission Tomography Computed Tomography , Cell Survival , Positron-Emission Tomography/methods
14.
Front Endocrinol (Lausanne) ; 13: 908248, 2022.
Article in English | MEDLINE | ID: mdl-35966081

ABSTRACT

Post-translational modifications can lead to a break in immune tolerance in autoimmune diseases such as type 1 diabetes (T1D). Deamidation, the conversion of glutamine to glutamic acid by transglutaminase (TGM) enzymes, is a post-translational modification of interest, with deamidated peptides being reported as autoantigens in T1D. However, little is known about how Tgm2, the most ubiquitously expressed Tgm isoform, is regulated and how tolerance against deamidated peptides is lost. Here, we report on the aberrant expression and regulation of Tgm2 in the pancreas and thymus of NOD mice. We demonstrate that Tgm2 expression is induced by the inflammatory cytokines IL1ß and IFNγ in a synergistic manner and that murine pancreatic islets of NOD mice have higher Tgm2 levels, while Tgm2 levels in medullary thymic epithelial cells are reduced. We thus provide the first direct evidence to our knowledge that central tolerance establishment against deamidated peptides might be impaired due to lower Tgm2 expression in NOD medullary thymic epithelial cells, which together with the aberrantly high levels of deamidated peptides in NOD ß-cells underscores the role of deamidation in amplifying T-cell reactivity.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Protein Glutamine gamma Glutamyltransferase 2/metabolism , Animals , Diabetes Mellitus, Type 1/metabolism , Islets of Langerhans/metabolism , Mice , Mice, Inbred NOD , Pancreas/metabolism
15.
J Nucl Med ; 63(2): 310-315, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34215672

ABSTRACT

Surgery with curative intent can be offered to congenital hyperinsulinism (CHI) patients, provided that the lesion is focal. Radiolabeled exendin-4 specifically binds the glucagonlike peptide 1 receptor on pancreatic ß-cells. In this study, we compared the performance of 18F-DOPA PET/CT, the current standard imaging method for CHI, and PET/CT with the new tracer 68Ga-NODAGA-exendin-4 in the preoperative detection of focal CHI. Methods: Nineteen CHI patients underwent both 18F-DOPA PET/CT and 68Ga-NODAGA-exendin-4 PET/CT before surgery. The images were evaluated in 3 settings: a standard clinical reading, a masked expert reading, and a joint reading. The target (lesion)-to-nontarget (normal pancreas) ratio was determined using SUVmax Image quality was rated by pediatric surgeons in a questionnaire. Results: Fourteen of 19 patients having focal lesions underwent surgery. On the basis of clinical readings, the sensitivity of 68Ga-NODAGA-exendin-4 PET/CT (100%; 95% CI, 77%-100%) was higher than that of 18F-DOPA PET/CT (71%; 95% CI, 42%-92%). Interobserver agreement between readings was higher for 68Ga-NODAGA-exendin-4 than for 18F-DOPA PET/CT (Fleiss κ = 0.91 vs. 0.56). 68Ga-NODAGA-exendin-4 PET/CT provided significantly (P = 0.021) higher target-to-nontarget ratios (2.02 ± 0.65) than did 18F-DOPA PET/CT (1.40 ± 0.40). On a 5-point scale, pediatric surgeons rated 68Ga-NODAGA-exendin-4 PET/CT as superior to 18F-DOPA PET/CT. Conclusion: For the detection of focal CHI, 68Ga-NODAGA-exendin-4 PET/CT has higher clinical sensitivity and better interobserver correlation than 18F-DOPA PET/CT. Better contrast and image quality make 68Ga-NODAGA-exendin-4 PET/CT superior to 18F-DOPA PET/CT in surgeons' intraoperative quest for lesion localization.


Subject(s)
Congenital Hyperinsulinism , Positron Emission Tomography Computed Tomography , Acetates , Child , Congenital Hyperinsulinism/diagnostic imaging , Exenatide , Gallium Radioisotopes , Heterocyclic Compounds, 1-Ring , Humans , Positron Emission Tomography Computed Tomography/methods
16.
Expert Opin Ther Targets ; 25(4): 269-281, 2021 04.
Article in English | MEDLINE | ID: mdl-33896351

ABSTRACT

INTRODUCTION: Aberrant citrullination and excessive peptidylarginine deiminase (PAD) activity are detected in numerous challenging autoimmune diseases such as rheumatoid arthritis, inflammatory bowel diseases, systemic lupus erythematosus, multiple sclerosis, and type 1 diabetes. Because excessive PAD activity is a common denominator in these diseases, PADs are interesting potential therapeutic targets for future therapies. AREAS COVERED: This review summarizes the advances made in the design of PAD inhibitors, their utilization and therapeutic potential in preclinical mouse models of autoimmunity. Relevant literature encompasses studies from 1994 to 2021 that are available on PubMed.gov. EXPERT OPINION: Pan-PAD inhibition is a promising therapeutic strategy for autoimmune diseases. Drugs achieving pan-PAD inhibition were capable of ameliorating, reversing, and preventing clinical symptoms in preclinical mouse models. However, the implications for PADs in key biological processes potentially present a high risk for clinical complications and could hamper the translation of PAD inhibitors to the clinic. We envisage that PAD isozyme-specific inhibitors will improve the understanding the role of PAD isozymes in disease pathology, reduce the risk of side-effects and enhance prospects for future clinical translation.


Subject(s)
Autoimmune Diseases/drug therapy , Molecular Targeted Therapy , Protein-Arginine Deiminases/antagonists & inhibitors , Animals , Autoimmune Diseases/enzymology , Autoimmune Diseases/physiopathology , Autoimmunity , Citrullination/drug effects , Disease Models, Animal , Drug Design , Humans , Isoenzymes , Mice , Protein-Arginine Deiminases/metabolism
17.
Diabetes ; 70(2): 516-528, 2021 02.
Article in English | MEDLINE | ID: mdl-33203696

ABSTRACT

Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated glucose-regulated protein 78, and reduced spontaneous neutrophil extracellular trap formation of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate characterized by reduced frequencies of effector memory CD4+ T cells and a modest reduction in the frequency of interferon-γ-producing CD4+ and CD8+ T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Insulin/metabolism , Ornithine/analogs & derivatives , Pancreas/drug effects , Protein-Arginine Deiminases/antagonists & inhibitors , Animals , Cytokines/metabolism , Diabetes Mellitus, Type 1/prevention & control , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Mice , Mice, Inbred NOD , Ornithine/pharmacology , Pancreas/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism
18.
Pharmaceutics ; 13(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34834283

ABSTRACT

Macrophages play a crucial role in the initiation and progression of rheumatoid arthritis (RA). Liposomes can be used to deliver therapeutics to macrophages by exploiting their phagocytic ability. However, since macrophages serve as the immune system's first responders, it is inadvisable to systemically deplete these cells. By loading the liposomes with the photosensitizer IRDye700DX, we have developed and tested a novel way to perform photodynamic therapy (PDT) on macrophages in inflamed joints. PEGylated liposomes were created using the film method and post-inserted with micelles containing IRDye700DX. For radiolabeling, a chelator was also incorporated. RAW 264.7 cells were incubated with liposomes with or without IRDye700DX and exposed to 689 nm light. Viability was determined using CellTiterGlo. Subsequently, biodistribution and PDT studies were performed on mice with collagen-induced arthritis (CIA). PDT using IRDye700DX-loaded liposomes efficiently induced cell death in vitro, whilst no cell death was observed using the control liposomes. Biodistribution of the two compounds in CIA mice was comparable with excellent correlation of the uptake with macroscopic and microscopic arthritis scores. Treatment with 700DX-loaded liposomes significantly delayed arthritis development. Here we have shown the proof-of-principle of performing PDT in arthritic joints using IRDye700DX-loaded liposomes, allowing locoregional treatment of arthritis.

19.
Diabetes ; 70(12): 2879-2891, 2021 12.
Article in English | MEDLINE | ID: mdl-34561224

ABSTRACT

In type 1 diabetes, autoimmune ß-cell destruction may be favored by neoantigens harboring posttranslational modifications (PTMs) such as citrullination. We studied the recognition of native and citrullinated glucose-regulated protein (GRP)78 peptides by CD8+ T cells. Citrullination modulated T-cell recognition and, to a lesser extent, HLA-A2 binding. GRP78-reactive CD8+ T cells circulated at similar frequencies in healthy donors and donors with type 1 diabetes and preferentially recognized either native or citrullinated versions, without cross-reactivity. Rather, the preference for native GRP78 epitopes was associated with CD8+ T cells cross-reactive with bacterial mimotopes. In the pancreas, a dominant GRP78 peptide was instead preferentially recognized when citrullinated. To further clarify these recognition patterns, we considered the possibility of citrullination in the thymus. Citrullinating peptidylarginine deiminase (Padi) enzymes were expressed in murine and human medullary epithelial cells (mTECs), with citrullinated proteins detected in murine mTECs. However, Padi2 and Padi4 expression was diminished in mature mTECs from NOD mice versus C57BL/6 mice. We conclude that, on one hand, the CD8+ T cell preference for native GRP78 peptides may be shaped by cross-reactivity with bacterial mimotopes. On the other hand, PTMs may not invariably favor loss of tolerance because thymic citrullination, although impaired in NOD mice, may drive deletion of citrulline-reactive T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Citrullination/physiology , Diabetes Mellitus, Type 1/immunology , Endoplasmic Reticulum Chaperone BiP/immunology , Epitopes, T-Lymphocyte/metabolism , Adolescent , Adult , Animals , Child , Citrullination/immunology , Diabetes Mellitus, Type 1/metabolism , Endoplasmic Reticulum Chaperone BiP/chemistry , Endoplasmic Reticulum Chaperone BiP/metabolism , Epitopes, T-Lymphocyte/chemistry , Female , Humans , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Middle Aged , Protein Processing, Post-Translational/immunology , Protein Processing, Post-Translational/physiology , Young Adult
20.
J Nucl Med ; 61(11): 1588-1593, 2020 11.
Article in English | MEDLINE | ID: mdl-32385165

ABSTRACT

Treatment of hyperinsulinemic hypoglycemia is challenging. Surgical treatment of insulinomas and focal lesions in congenital hyperinsulinism is invasive and carries major risks of morbidity. Medication to treat nesidioblastosis and diffuse congenital hyperinsulinism has varying efficacy and causes significant side effects. Here, we describe a novel method for therapy of hyperinsulinemic hyperglycemia, highly selectively killing ß-cells by receptor-targeted photodynamic therapy (rtPDT) with exendin-4-IRDye700DX, targeting the glucagon-like peptide 1 receptor (GLP-1R). Methods: A competitive binding assay was performed using Chinese hamster lung (CHL) cells transfected with the GLP-1R. The efficacy and specificity of rtPDT with exendin-4-IRDye700DX were examined in vitro in cells with different levels of GLP-1R expression. Tracer biodistribution was determined in BALB/c nude mice bearing subcutaneous CHL-GLP-1R xenografts. Induction of cellular damage and the effect on tumor growth were analyzed to determine treatment efficacy. Results: Exendin-4-IRDye700DX has a high affinity for the GLP-1R, with a half-maximal inhibitory concentration of 6.3 nM. rtPDT caused significant specific phototoxicity in GLP-1R-positive cells (2.3% ± 0.8% and 2.7% ± 0.3% remaining cell viability in CHL-GLP-1R and INS-1 cells, respectively). The tracer accumulates dose-dependently in GLP-1R-positive tumors. In vivo, rtPDT induces cellular damage in tumors, shown by strong expression of cleaved caspase-3, and leads to a prolonged median survival of the mice (36.5 vs. 22.5 d, respectively; P < 0.05). Conclusion: These data show in vitro as well as in vivo evidence of the potency of rtPDT using exendin-4-IRDye700DX. This approach might in the future provide a new, minimally invasive, highly specific treatment method for hyperinsulinemic hypoglycemia.


Subject(s)
Congenital Hyperinsulinism/drug therapy , Glucagon-Like Peptide-1 Receptor/metabolism , Photochemotherapy/methods , Animals , Cell Line, Tumor , Cricetinae , Cricetulus , Exenatide/metabolism , Exenatide/therapeutic use , Female , Humans , Indoles/metabolism , Indoles/therapeutic use , Mice , Mice, Inbred BALB C , Nesidioblastosis/drug therapy , Organosilicon Compounds/metabolism , Organosilicon Compounds/therapeutic use , Rats
SELECTION OF CITATIONS
SEARCH DETAIL