Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-38821318

ABSTRACT

BACKGROUND: Reaction threshold and severity in food allergy are difficult to predict, and there is a lack of non-invasive predictors. OBJECTIVES: We sought to determine the relationships between pre-challenge levels of peanut (PN)-specific antibodies in saliva and reaction threshold, severity, and organ-specific symptoms during peanut allergic reactions. METHODS: We measured PN-specific antibody levels in saliva collected from 127 children with suspected peanut allergy prior to double-blind, placebo-controlled peanut challenges where reaction threshold, severity, and symptoms were rigorously characterized. Low-threshold peanut allergy was defined as reaction to <300mg of peanut protein cumulatively consumed. A consensus severity grading system was used to grade severity. We analyzed associations between antibody levels and reaction threshold, severity, and organ-specific symptoms. RESULTS: Among the 127 children, those with high pre-challenge saliva PN IgE had higher odds of low-threshold peanut allergy (OR 3.9, 95%CI 1.6-9.5), while those with high saliva PN IgA: PN IgE or PN IgG4:PN IgE had lower odds of low-threshold peanut allergy (OR 0.3, 95%CI 0.1-0.8, and OR 0.4, 95%CI 0.2-0.9, respectively). Children with high pre-challenge saliva PN IgG4 had lower odds of severe peanut reactions (OR 0.4, 95%CI 0.2-0.9). Those with high saliva PN IgE had higher odds of respiratory symptoms (OR 8.0, 95%CI 2.2-26.8). Saliva PN IgE modestly correlated with serum PN IgE levels (Pearson r=0.31, P=0.0004). High and low saliva PN IgE levels further distinguished reaction threshold and severity in participants stratified by serum PN IgE, suggesting endotypes. CONCLUSION: Saliva PN antibodies could aid in non-invasive risk stratification of peanut allergy threshold, severity, and organ-specific symptoms.

2.
J Allergy Clin Immunol ; 153(6): 1721-1728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38272374

ABSTRACT

BACKGROUND: Reaction thresholds in peanut allergy are highly variable. Elucidating causal relationships between molecular and cellular processes associated with variable thresholds could point to therapeutic pathways for raising thresholds. OBJECTIVE: The aim of this study was to characterize molecular and cellular systemic processes associated with reaction threshold in peanut allergy and causal relationships between them. METHODS: A total of 105 children aged 4 to 14 years with suspected peanut allergy underwent double-blind, placebo-controlled food challenge to peanut. The cumulative peanut protein quantity eliciting allergic symptoms was considered the reaction threshold for each child. Peripheral blood samples collected at 0, 2, and 4 hours after challenge start were used for RNA sequencing, whole blood staining, and cytometry. Statistical and network analyses were performed to identify associations and causal mediation between the molecular and cellular profiles and peanut reaction threshold. RESULTS: Within the cohort (N = 105), 81 children (77%) experienced allergic reactions after ingesting varying quantities of peanut, ranging from 43 to 9043 mg of cumulative peanut protein. Peripheral blood expression of transcripts (eg, IGF1R [false discovery rate (FDR) = 5.4e-5] and PADI4 [FDR = 5.4e-5]) and neutrophil abundance (FDR = 9.5e-4) were associated with peanut threshold. Coexpression network analyses revealed that the threshold-associated transcripts were enriched in modules for FcγR-mediated phagocytosis (FDR = 3.2e-3) and Toll-like receptor (FDR = 1.4e-3) signaling. Bayesian network, key driver, and causal mediation analyses identified key drivers (AP5B1, KLHL21, VASP, TPD52L2, and IGF2R) within these modules that are involved in bidirectional causal mediation relationships with neutrophil abundance. CONCLUSION: Key driver transcripts in FcγR-mediated phagocytosis and Toll-like receptor signaling interact bidirectionally with neutrophils in peripheral blood and are associated with reaction threshold in peanut allergy.


Subject(s)
Peanut Hypersensitivity , Humans , Peanut Hypersensitivity/immunology , Child , Child, Preschool , Male , Female , Adolescent , Transcriptome , Arachis/immunology , Allergens/immunology , Double-Blind Method , Flow Cytometry
3.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295882

ABSTRACT

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Subject(s)
Asthma , Hypersensitivity , United States , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Hypersensitivity/genetics , Asthma/etiology , Genomics , Proteomics , Metabolomics
4.
Allergy ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38796780

ABSTRACT

BACKGROUND: Allergic rhinitis is a common inflammatory condition of the nasal mucosa that imposes a considerable health burden. Air pollution has been observed to increase the risk of developing allergic rhinitis. We addressed the hypotheses that early life exposure to air toxics is associated with developing allergic rhinitis, and that these effects are mediated by DNA methylation and gene expression in the nasal mucosa. METHODS: In a case-control cohort of 505 participants, we geocoded participants' early life exposure to air toxics using data from the US Environmental Protection Agency, assessed physician diagnosis of allergic rhinitis by questionnaire, and collected nasal brushings for whole-genome DNA methylation and transcriptome profiling. We then performed a series of analyses including differential expression, Mendelian randomization, and causal mediation analyses to characterize relationships between early life air toxics, nasal DNA methylation, nasal gene expression, and allergic rhinitis. RESULTS: Among the 505 participants, 275 had allergic rhinitis. The mean age of the participants was 16.4 years (standard deviation = 9.5 years). Early life exposure to air toxics such as acrylic acid, phosphine, antimony compounds, and benzyl chloride was associated with developing allergic rhinitis. These air toxics exerted their effects by altering the nasal DNA methylation and nasal gene expression levels of genes involved in respiratory ciliary function, mast cell activation, pro-inflammatory TGF-ß1 signaling, and the regulation of myeloid immune cell function. CONCLUSIONS: Our results expand the range of air pollutants implicated in allergic rhinitis and shed light on their underlying biological mechanisms in nasal mucosa.

5.
Pediatr Allergy Immunol ; 35(1): e14065, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284919

ABSTRACT

As a potential link between genetic predisposition, environmental exposures, and food allergy outcomes, epigenetics has been a molecular variable of interest in ongoing efforts to understand food allergy mechanisms and outcomes. Here we review population-based investigations of epigenetic loci associated with food allergy, focusing on established clinical food allergy. We first provide an overview of epigenetic mechanisms that have been studied in cohorts with food allergy, predominantly DNA methylation but also microRNA. We then discuss investigations that have implemented epigenome-wide approaches aimed at genome-wide profiling and discovery. Such epigenome-wide studies have collectively identified differentially methylated and differentially regulated loci associated with T cell development, antigen presentation, reaction severity, and causal mediation in food allergy. We then discuss candidate-gene investigations that have honed in on Th1, Th2, T regulatory, and innate genes of a priori interest in food allergy. These studies have highlighted methylation changes in specific candidate genes as associated with T regulatory cell activity as well as differential methylation of Type 1 and Type 2 cytokine genes associated with various food allergies. Intriguingly, epigenetic loci associated with food allergy have also been explored as potential biomarkers for the clinical management of food allergy. We conclude by highlighting several priority directions for advancing population-based epigenomic and epigenetic understandings of food allergy.


Subject(s)
Food Hypersensitivity , MicroRNAs , Humans , Epigenomics , Food Hypersensitivity/genetics , Cell Differentiation , Epigenesis, Genetic
6.
J Allergy Clin Immunol ; 152(5): 1060-1072, 2023 11.
Article in English | MEDLINE | ID: mdl-37741554

ABSTRACT

Human epigenetic variation is associated with both environmental exposures and allergic diseases and can potentially serve as a biomarker connecting climate change with allergy and airway diseases. In this narrative review, we summarize recent human epigenetic studies examining exposure to temperature, precipitation, extreme weather events, and malnutrition to discuss findings as they relate to allergic and airway diseases. Temperature has been the most widely studied exposure, with the studies implicating both short-term and long-term exposures with epigenetic alterations and epigenetic aging. Few studies have examined natural disasters or extreme weather events. The studies available have reported differential DNA methylation of multiple genes and pathways, some of which were previously associated with asthma or allergy. Few studies have integrated climate-related events, epigenetic biomarkers, and allergic disease together. Prospective longitudinal studies are needed along with the collection of target tissues beyond blood samples, such as nasal and skin cells. Finally, global collaboration to increase diverse representation of study participants, particularly those most affected by climate injustice, as well as strengthen replication, validation, and harmonization of measurements will be needed to elucidate the impacts of climate change on the human epigenome.


Subject(s)
Hypersensitivity , Respiration Disorders , Humans , Climate Change , Prospective Studies , Hypersensitivity/genetics , Biomarkers , DNA Methylation , Epigenesis, Genetic
7.
J Allergy Clin Immunol ; 152(6): 1569-1580, 2023 12.
Article in English | MEDLINE | ID: mdl-37619819

ABSTRACT

BACKGROUND: Rising rates of peanut allergy (PA) motivate investigations of its development to inform prevention and therapy. Microbiota and the metabolites they produce shape food allergy risk. OBJECTIVE: We sought to gain insight into gut microbiome and metabolome dynamics in the development of PA. METHODS: We performed a longitudinal, integrative study of the gut microbiome and metabolome of infants with allergy risk factors but no PA from a multicenter cohort followed through mid-childhood. We performed 16S rRNA sequencing, short chain fatty acid measurements, and global metabolome profiling of fecal samples at infancy and at mid-childhood. RESULTS: In this longitudinal, multicenter sample (n = 122), 28.7% of infants developed PA by mid-childhood (mean age 9 years). Lower infant gut microbiome diversity was associated with PA development (P = .014). Temporal changes in the relative abundance of specific microbiota and gut metabolite levels significantly differed in children who developed PA. PA-bound children had different abundance trajectories of Clostridium sensu stricto 1 sp (false discovery rate (FDR) = 0.015) and Bifidobacterium sp (FDR = 0.033), with butyrate (FDR = 0.045) and isovalerate (FDR = 0.036) decreasing over time. Metabolites associated with PA development clustered within the histidine metabolism pathway. Positive correlations between microbiota, butyrate, and isovalerate and negative correlations with histamine marked the PA-free network. CONCLUSION: The temporal dynamics of the gut microbiome and metabolome in early childhood are distinct for children who develop PA. These findings inform our thinking on the mechanisms underlying and strategies for potentially preventing PA.


Subject(s)
Gastrointestinal Microbiome , Peanut Hypersensitivity , Child , Child, Preschool , Humans , Infant , Butyrates , Feces/microbiology , Gastrointestinal Microbiome/genetics , Metabolome , RNA, Ribosomal, 16S/genetics , Longitudinal Studies
8.
Clin Exp Allergy ; 53(5): 536-549, 2023 05.
Article in English | MEDLINE | ID: mdl-36756745

ABSTRACT

INTRODUCTION: Food allergic reactions can be severe and potentially life-threatening and the underlying immunological processes that contribute to the severity of reactions are poorly understood. The aim of this study is to integrate bulk RNA-sequencing of human and mouse peripheral blood mononuclear cells during food allergic reactions and in vivo mouse models of food allergy to identify dysregulated immunological processes associated with severe food allergic reactions. METHODS: Bulk transcriptomics of whole blood from human and mouse following food allergic reactions combined with integrative differential expressed gene bivariate and module eigengene network analyses to identify the whole blood transcriptome associated with food allergy severity. In vivo validation immune cell and gene expression in mice following IgE-mediated reaction. RESULTS: Bulk transcriptomics of whole blood from mice with different severity of food allergy identified gene ontology (GO) biological processes associated with innate and inflammatory immune responses, dysregulation of MAPK and NFkB signalling and identified 429 genes that correlated with reaction severity. Utilizing two independent human cohorts, we identified 335 genes that correlated with severity of peanut-induced food allergic reactions. Mapping mouse food allergy severity transcriptome onto the human transcriptome revealed 11 genes significantly dysregulated and correlated with severity. Analyses of whole blood from mice undergoing an IgE-mediated reaction revealed a rapid change in blood leukocytes particularly inflammatory monocytes (Ly6Chi Ly6G- ) and neutrophils that was associated with changes in CLEC4E, CD218A and GPR27 surface expression. CONCLUSIONS: Collectively, IgE-mediated food allergy severity is associated with a rapid innate inflammatory response associated with acute cellular stress processes and dysregulation of peripheral blood inflammatory myeloid cell frequencies.


Subject(s)
Biological Phenomena , Food Hypersensitivity , Peanut Hypersensitivity , Humans , Animals , Mice , Leukocytes, Mononuclear , Food Hypersensitivity/genetics , Allergens , Immunoglobulin E , Receptors, G-Protein-Coupled
9.
Allergy ; 78(2): 512-521, 2023 02.
Article in English | MEDLINE | ID: mdl-36448508

ABSTRACT

BACKGROUND: Intestinal microenvironmental perturbations may increase food allergy risk. We hypothesize that children with clinical food allergy, those with food sensitization, and healthy children can be differentiated by intestinal metabolites in the first years of life. METHODS: In this ancillary analysis of the Vitamin D Antenatal Asthma Reduction Trial (VDAART), we performed untargeted metabolomic profiling in 824 stool samples collected at ages 3-6 months, 1 year and 3 years. Subjects included 23 with clinical food allergy at age 3 and/or 6 years, 151 with food sensitization but no clinical food allergy, and 220 controls. We identified modules of correlated, functionally related metabolites and sought associations of metabolite modules and individual metabolites with food allergy/sensitization using regression models. RESULTS: Several modules of functionally related intestinal metabolites were reduced among subjects with food allergy, including bile acids at ages 3-6 months and 1 year, amino acids at age 3-6 months, steroid hormones at 1 year, and sphingolipids at age 3 years. One module primarily containing diacylglycerols was increased in those with food allergy at age 3-6 months. Fecal caffeine metabolites at age 3-6 months, likely derived from breast milk, were increased in those with food allergy and/or sensitization (beta = 5.9, 95% CI 1.0-10.8, p = .02) and were inversely correlated with fecal bile acids and bilirubin metabolites, though maternal plasma caffeine levels were not associated with food allergy and/or sensitization. CONCLUSIONS: Several classes of bioactive fecal metabolites are associated with food allergy and/or sensitization including bile acids, steroid hormones, sphingolipids, and caffeine metabolites.


Subject(s)
Caffeine , Food Hypersensitivity , Child , Humans , Female , Pregnancy , Child, Preschool , Infant , Food Hypersensitivity/diagnosis , Metabolomics , Allergens , Milk, Human , Sphingolipids
10.
J Allergy Clin Immunol ; 150(5): 1232-1236, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35718139

ABSTRACT

BACKGROUND: Genetic predisposition increases risk for asthma, and distinct nasal microbial compositions are associated with asthma. Host genetics might shape nasal microbiome composition. OBJECTIVE: We examined associations between host genetics and nasal microbiome composition. METHODS: Nasal samples were collected from 584 participants from the Mount Sinai Health System, New York. Seventy-seven follow-up samples were collected from a subset of 40 participants. 16S rRNA sequencing and RNA sequencing were performed on nasal samples. Beta diversity was calculated, variant calling on RNA sequencing data was performed, and genetic relatedness between individuals was determined. Using linear regression models, we tested for associations between genetic relatedness and nasal microbiome composition. RESULTS: The median age of the cohort was 14.6 (interquartile range 11.2-19.5) years, with participants representing diverse ancestries and 52.7% of the cohort being female. For participants who provided follow-up samples, the median time between samples was 5.1 (interquartile range 1.4-7.2) months. Nasal microbiome composition similarity as reflected by beta diversity was significantly higher within subjects over time versus between subjects (coefficient = 0.091, P = 2.84-7). There was no significant association between genetic relatedness and beta diversity (coefficient = -0.05, P = .29). Additional analyses exploring the relationship between beta diversity and genetic variance yielded similar results. CONCLUSION: Host genetics has little influence on nasal microbiome composition.


Subject(s)
Asthma , Microbiota , Humans , Female , Child , Adolescent , Young Adult , Adult , Male , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Nose , Cohort Studies
11.
J Allergy Clin Immunol ; 150(3): 714-720.e2, 2022 09.
Article in English | MEDLINE | ID: mdl-35550149

ABSTRACT

BACKGROUND: The oral and gut microbiomes have each been associated with food allergy status. Within food allergy, they may also influence reaction thresholds. OBJECTIVE: Our aim was to identify oral and gut microbiota associated with reaction thresholds in peanut allergy. METHODS: A total of 59 children aged 4 to 14 years with suspected peanut allergy underwent double-blind, placebo-controlled food challenge to peanut. Those children who reacted at the 300-mg or higher dose of peanut were classified as high-threshold (HT), those who reacted to lower doses were classified as low-threshold (LT), and those children who did not react were classified as not peanut allergic (NPA). Saliva and stool samples collected before challenge underwent DNA isolation followed by 16S rRNA sequencing and short-chain fatty acid measurement. RESULTS: The 59 participants included 38 HT children and 13 LT children. Saliva microbiome α-diversity (Shannon index) was higher in LT children (P = .017). We identified saliva and stool microbiota that distinguished HT children from LT children, including oral Veillonella nakazawae (amplicon sequence variant 1979), which was more abundant in the HT group than in the LT group (false discovery rate [FDR] = 0.025), and gut Bacteroides thetaiotaomicron (amplicon sequence variant 6829), which was less abundant in HT children than in LT children (FDR = 0.039). Comparison with NPA children revealed consistent ordinal trends between these discriminating species and reaction thresholds. Importantly, many of these threshold-associated species were also correlated with short-chain fatty acid levels at the respective body sites, including between oral V nakazawae and oral butyrate (r = 0.57; FDR = 0.049). CONCLUSION: Findings from this multiscale study raise the possibility of microbial therapeutics to increase reaction thresholds in children with food allergy.


Subject(s)
Peanut Hypersensitivity , Adolescent , Allergens , Arachis , Child , Child, Preschool , Double-Blind Method , Humans , Peanut Hypersensitivity/therapy , RNA, Ribosomal, 16S/genetics
12.
J Allergy Clin Immunol ; 147(1): 15-28, 2021 01.
Article in English | MEDLINE | ID: mdl-33436162

ABSTRACT

Food allergy (FA), a growing public health burden in the United States, and familial aggregation studies support strong roles for both genes and environment in FA risk. Deepening our understanding of the molecular and cellular mechanisms driving FAs is paramount to improving its prevention, diagnosis, and clinical management. In this review, we document lessons learned from the genetics of FA that have aided our understanding of these mechanisms. Although current genetic association studies suffer from low power, heterogeneity in definition of FA, and difficulty in our ability to truly disentangle FA from food sensitization (FS) and general atopy genetics, they reveal a set of genetic loci, genes, and variants that continue to implicate the importance of barrier and immune function genes across the atopic march, and FA in particular. The largest reported effects on FA are from MALT1 (odds ratio, 10.99), FLG (average odds ratio, ∼2.9), and HLA (average odds ratio, ∼2.03). The biggest challenge in the field of FA genetics is to elucidate the specific mechanism of action on FA risk and pathogenesis for these loci, and integrative approaches including genetics/genomics with transcriptomics, proteomics, and metabolomics will be critical next steps to translating these genetic insights into practice.


Subject(s)
Allergens , Food Hypersensitivity , Genetic Predisposition to Disease , Allergens/genetics , Allergens/immunology , Filaggrin Proteins , Food Hypersensitivity/genetics , Food Hypersensitivity/immunology , Humans
13.
J Allergy Clin Immunol ; 148(1): 244-249.e4, 2021 07.
Article in English | MEDLINE | ID: mdl-33592204

ABSTRACT

BACKGROUND: Pet allergies are common in children with asthma. Microbiota and host responses may mediate allergen sensitization. OBJECTIVE: We sought to uncover host-microbe relationships in pet allergen sensitization via joint examination of the nasal microbiome and nasal transcriptome. METHODS: We collected nasal samples from 132 children with asthma for parallel 16S rRNA and RNA sequencing. Specific IgE levels for cat and dog dander were measured. Analyses of the nasal microbiome, nasal transcriptome, and their correlations were performed with respect to pet sensitization status. RESULTS: Among the 132 children, 91 (68.9%) were cat sensitized and 96 (72.7%) were dog sensitized. Cat sensitization was associated with lower nasal microbial diversity by Shannon index (P = .021) and differential nasal bacterial composition by weighted UniFrac distance (permutational multivariate ANOVA P = .035). Corynebacterium sp and Staphylococcus epidermidis were significantly less abundant, and the metabolic process "fatty acid elongation in mitochondria" was lower in pet-sensitized versus unsensitized children. Correlation networks revealed that the nasal expression levels of 47 genes representing inflammatory processes were negatively correlated with the relative abundances of Corynebacterium sp and S epidermidis. Thus, these species were directly associated not only with the absence of pet sensitization but also with the underexpression of host gene expression of inflammatory processes that contribute to allergen sensitization. Causal mediation analyses revealed that the associations between these nasal species and pet sensitization were mediated by nasal gene expression. CONCLUSIONS: Higher abundances of nasal Corynebacterium sp and S epidermidis are associated with absence of pet sensitization and correlate with lower expression of inflammatory genes.


Subject(s)
Microbiota/immunology , Nose/immunology , Nose/microbiology , Pets/immunology , Transcriptome/immunology , Allergens/immunology , Animals , Asthma/immunology , Cats , Child , Dogs , Female , Humans , Hypersensitivity/immunology , Immunoglobulin E/immunology , Male , RNA, Ribosomal, 16S/immunology
14.
J Allergy Clin Immunol ; 148(2): 627-632.e3, 2021 08.
Article in English | MEDLINE | ID: mdl-33819506

ABSTRACT

BACKGROUND: The oral mucosa is the initial interface between food antigens, microbiota, and mucosal immunity, yet, little is known about oral host-environment dynamics in food allergy. OBJECTIVE: Our aim was to determine oral microbial, metabolic, and immunologic profiles associated with peanut allergy. METHODS: We recruited 105 subjects (56 with peanut allergy and 49 healthy subjects) for salivary microbiome profiling using 16S ribosomal RNA sequencing, short-chain fatty acid (SCFA) metabolite assays using liquid chromatography/mass spectrometry, and measurement of oral secreted cytokines using multiplex assays. Analyses within and across data types were performed. RESULTS: The oral microbiome of individuals with peanut allergy was characterized by reduced species in the orders Lactobacillales, Bacteroidales (Prevotella spp), and Bacillales, and increased Neisseriales spp. The distinct oral microbiome of subjects with peanut allergy was accompanied by significant reductions in oral SCFA levels, including acetate, butyrate, and propionate, and significant elevation of IL-4 secretion. Decreased abundances of oral Prevotella spp and Veillonella spp in subjects with peanut allergy were significantly correlated with reduced oral SCFA levels (false discovery rate < 0.05), and increased oral Neisseria spp was correlated with lower oral SCFA levels (false discovery rate < 0.05). Additionally, oral Prevotella spp abundances were correlated with decreased local secretion of TH2-stimulating epithelial factors (IL-33 and thymic stromal lymphopoietin) and TH2 cytokines (IL-4, IL-5, and IL-13), whereas oral Neisseria spp abundance was positively associated with a TH2-skewed oral immune milieu. CONCLUSION: Our novel multidimensional analysis of the oral environment revealed distinct microbial and metabolic profiles associated with mucosal immune disturbances in peanut allergy. Our findings highlight the oral environment as an anatomic site of interest to examine host-microbiome dynamics in food allergy.


Subject(s)
Bacteria , Microbiota/immunology , Mouth , Peanut Hypersensitivity , Saliva , Adolescent , Bacteria/classification , Bacteria/immunology , Child , Cytokines/immunology , Female , Humans , Male , Mouth/immunology , Mouth/microbiology , Peanut Hypersensitivity/immunology , Peanut Hypersensitivity/microbiology , Saliva/immunology , Saliva/microbiology , Th2 Cells/immunology
15.
J Allergy Clin Immunol ; 147(3): 879-893, 2021 03.
Article in English | MEDLINE | ID: mdl-32828590

ABSTRACT

BACKGROUND: Nasal transcriptomics can provide an accessible window into asthma pathobiology. OBJECTIVE: Our goal was to move beyond gene signatures of asthma to identify master regulator genes that causally regulate genes associated with asthma phenotypes. METHODS: We recruited 156 children with severe persistent asthma and controls for nasal transcriptome profiling and applied network-based and probabilistic causal methods to identify severe asthma genes and their master regulators. We then took the same approach in an independent cohort of 190 adults with mild/moderate asthma and controls to identify mild/moderate asthma genes and their master regulators. Comparative analysis of the master regulator genes followed by validation testing in independent children with severe asthma (n = 21) and mild/moderate asthma (n = 154) was then performed. RESULTS: Nasal gene signatures for severe persistent asthma and for mild/moderate persistent asthma were identified; both were found to be enriched in coexpression network modules for ciliary function and inflammatory response. By applying probabilistic causal methods to these gene signatures and validation testing in independent cohorts, we identified (1) a master regulator gene common to asthma across severity and ages (FOXJ1); (2) master regulator genes of severe persistent asthma in children (LRRC23, TMEM231, CAPS, PTPRC, and FYB); and (3) master regulator genes of mild/moderate persistent asthma in children and adults (C1orf38 and FMNL1). The identified master regulators were statistically inferred to causally regulate the expression of downstream genes that modulate ciliary function and inflammatory response to influence asthma. CONCLUSION: The identified master regulator genes of asthma provide a novel path forward to further uncovering asthma mechanisms and therapy.


Subject(s)
Asthma/genetics , Nose/physiology , Adolescent , Child , Cohort Studies , Female , Forkhead Transcription Factors/genetics , Formins/genetics , Gene Expression Profiling , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Models, Statistical , Phenotype , Transcriptome
16.
Curr Opin Pediatr ; 33(6): 639-647, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34412069

ABSTRACT

PURPOSE OF REVIEW: Asthma is the most common chronic disease of childhood. Investigations of the lower and upper airway microbiomes have significantly progressed over recent years, and their roles in pediatric asthma are becoming increasingly clear. RECENT FINDINGS: Early studies identified the existence of upper and lower airway microbiomes, including imbalances in both associated with pediatric asthma. The infant airway microbiome may offer predictive value for the development of asthma in later childhood, and it may also be influenced by external factors such as respiratory viral illness. The airway microbiome has also been associated with the clinical course of asthma, including rates of exacerbation and level of control. Advances in -omics sciences have enabled improved identification of the airway microbiome's relationships with host response and function in children with asthma. Investigations are now moving toward the application of the above findings to explore risk modification and treatment options. SUMMARY: The airway microbiome provides an intriguing window into pediatric asthma, offering insights into asthma diagnosis, clinical course, and perhaps treatment. Further investigation is needed to solidify these associations and translate research findings into clinical practice.


Subject(s)
Asthma , Microbiota , Asthma/diagnosis , Asthma/therapy , Child , Humans , Infant , Respiratory System
17.
J Allergy Clin Immunol ; 145(4): 1219-1230, 2020 04.
Article in English | MEDLINE | ID: mdl-31838046

ABSTRACT

BACKGROUND: Unexpected allergic reactions to peanut are the most common cause of fatal food-related anaphylaxis. Mechanisms underlying the variable severity of peanut-allergic reactions remain unclear. OBJECTIVES: We sought to expand mechanistic understanding of reaction severity in peanut allergy. METHODS: We performed an integrated transcriptomic and epigenomic study of peanut-allergic children as they reacted in vivo during double-blind, placebo-controlled peanut challenges. We integrated whole-blood transcriptome and CD4+ T-cell epigenome profiles to identify molecular signatures of reaction severity (ie, how severely a peanut-allergic child reacts when exposed to peanut). A threshold-weighted reaction severity score was calculated for each subject based on symptoms experienced during peanut challenge and the eliciting dose. Through linear mixed effects modeling, network construction, and causal mediation analysis, we identified genes, CpGs, and their interactions that mediate reaction severity. Findings were replicated in an independent cohort. RESULTS: We identified 318 genes with changes in expression during the course of reaction associated with reaction severity, and 203 CpG sites with differential DNA methylation associated with reaction severity. After replicating these findings in an independent cohort, we constructed interaction networks with the identified peanut severity genes and CpGs. These analyses and leukocyte deconvolution highlighted neutrophil-mediated immunity. We identified NFKBIA and ARG1 as hubs in the networks and 3 groups of interacting key node CpGs and peanut severity genes encompassing immune response, chemotaxis, and regulation of macroautophagy. In addition, we found that gene expression of PHACTR1 and ZNF121 causally mediates the association between methylation at corresponding CpGs and reaction severity, suggesting that methylation may serve as an anchor upon which gene expression modulates reaction severity. CONCLUSIONS: Our findings enhance current mechanistic understanding of the genetic and epigenetic architecture of reaction severity in peanut allergy.


Subject(s)
Anaphylaxis/genetics , CD4-Positive T-Lymphocytes/physiology , Peanut Hypersensitivity/genetics , Adolescent , Allergens/immunology , Arachis/immunology , Child , Cohort Studies , DNA Methylation , Disease Progression , Epigenesis, Genetic , Female , Gene Regulatory Networks , Humans , Immunity/genetics , Immunization , Male , Transcriptome
18.
Allergy ; 75(3): 625-635, 2020 03.
Article in English | MEDLINE | ID: mdl-31535385

ABSTRACT

BACKGROUND: Household endotoxin levels have been variably associated with risk for asthma and atopy. METHODS: We studied participants from the 2005-2006 National Health and Nutrition Examination Survey (NHANES, n = 6963), a large cohort representative of the US population (aged 1-84 years). We built logistic regression models to test for associations between house dust endotoxin and sensitization to specific foods (milk, egg, and peanut). To experimentally explore the detected epidemiologic associations, peripheral blood mononuclear cells (PBMCs) were collected from 21 children (aged 1-19 years) mono-food allergic (ie, sensitized and clinically reactive) to milk, egg, or peanut and nonallergic controls for stimulation with endotoxin and secreted cytokine measurement. For each food allergy, linear mixed-effects models were built to test the association between endotoxin stimulation and cytokine level. RESULTS: Among NHANES subjects, the geometric mean household endotoxin level was 15.5 EU/mg (GSE 0.5). Prevalence of food allergen sensitization (sIgE ≥ 0.35 kUA /L) varied by food: milk 5.7%, egg 4.0%, and peanut 7.9%. In models adjusted for potential confounders (age, race, country of birth, total people per household, US region, and history of wheezing in the past year), household endotoxin level was associated with sensitization to milk (OR 1.7, 95% CI 1.2-2.1) and egg (OR 1.4, 95% CI 1.01-1.9), but not peanut (OR 0.98, 95% CI 0.8-1.2). Interferon-γ levels of endotoxin-stimulated PBMCs from children allergic to milk or egg, but not peanut, were significantly lower compared to controls in linear mixed-effects models adjusted for repeated measures, experimental variables, age, and inter-individual variability (P-values .007, .018, and .058, respectively). CONCLUSION: Higher household endotoxin is associated with increased odds of milk and egg sensitization. Altered cytokine responsiveness to endotoxin is also observed in PBMCs from individuals with milk and egg allergy.


Subject(s)
Endotoxins , Food Hypersensitivity , Adolescent , Adult , Aged , Aged, 80 and over , Allergens , Animals , Child , Child, Preschool , Humans , Infant , Leukocytes, Mononuclear , Middle Aged , Nutrition Surveys , Young Adult
19.
J Allergy Clin Immunol ; 144(1): 13-23, 2019 07.
Article in English | MEDLINE | ID: mdl-31277743

ABSTRACT

Asthma is a highly heterogeneous disease, often manifesting with wheeze, dyspnea, chest tightness, and cough as prominent symptoms. The eliciting factors, natural history, underlying molecular biology, and clinical management of asthma vary highly among affected subjects. Because of this variation, many efforts have gone into subtyping asthma. Endotypes are subtypes of disease based on distinct pathophysiologic mechanisms. Endotypes can be clinically useful because they organize our mechanistic understanding of heterogeneous diseases and can direct treatment toward modalities that are likely to be the most effective. Asthma endotyping can be shaped by clinical features, laboratory parameters, and/or -omics approaches. We discuss the application of -omics approaches, including transcriptomics, epigenomics, microbiomics, metabolomics, and proteomics, to asthma endotyping. -Omics approaches have provided supporting evidence for many existing endotyping paradigms and also suggested novel ways to conceptualize asthma endotypes. Although endotypes based on single -omics approaches are relatively common, their integrated multi-omics application to asthma endotyping has been more limited thus far. We discuss paths forward to integrate multi-omics with clinical features and laboratory parameters to achieve the goal of precise asthma endotypes.


Subject(s)
Asthma/classification , Animals , Asthma/genetics , Asthma/metabolism , Asthma/microbiology , Genomics , Humans , Metabolomics , Microbiota
20.
J Allergy Clin Immunol ; 144(6): 1468-1477, 2019 12.
Article in English | MEDLINE | ID: mdl-31812181

ABSTRACT

Growing evidence points to an important role for the commensal microbiota in susceptibility to food allergy. Epidemiologic studies demonstrate associations between exposures known to modify the microbiome and risk of food allergy. Direct profiling of the gut microbiome in human cohort studies has demonstrated that individuals with food allergy have distinct gut microbiomes compared to healthy control subjects, and dysbiosis precedes the development of food allergy. Mechanistic studies in mouse models of food allergy have confirmed that the composition of the intestinal microbiota can imprint susceptibility or resistance to food allergy on the host and have identified a unique population of microbially responsive RORγt-positive FOXp3-positive regulatory T cells as critical for the maintenance of tolerance to foods. Armed with this new understanding of the role of the microbiota in food allergy and tolerance, therapeutics aimed at modifying the gastrointestinal microbiota are in development. In this article we review key milestones in the development of our current understanding of how the gastrointestinal microbiota contributes to food allergy and discuss our vision for the future of the field.


Subject(s)
Food Hypersensitivity/immunology , Food Hypersensitivity/microbiology , Microbiota/immunology , Animals , Dysbiosis/immunology , Dysbiosis/microbiology , Dysbiosis/pathology , Dysbiosis/therapy , Food Hypersensitivity/pathology , Food Hypersensitivity/therapy , Humans , Immune Tolerance , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL