Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Proc Natl Acad Sci U S A ; 115(32): E7469-E7477, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30042215

ABSTRACT

Acid-sensing ion channels (ASICs) have emerged as important, albeit challenging therapeutic targets for pain, stroke, etc. One approach to developing therapeutic agents could involve the generation of functional antibodies against these channels. To select such antibodies, we used channels assembled in nanodiscs, such that the target ASIC1a has a configuration as close as possible to its natural state in the plasma membrane. This methodology allowed selection of functional antibodies that inhibit acid-induced opening of the channel in a dose-dependent way. In addition to regulation of pH, these antibodies block the transport of cations, including calcium, thereby preventing acid-induced cell death in vitro and in vivo. As proof of concept for the use of these antibodies to modulate ion channels in vivo, we showed that they potently protect brain cells from death after an ischemic stroke. Thus, the methodology described here should be general, thereby allowing selection of antibodies to other important ASICs, such as those involved in pain, neurodegeneration, and other conditions.


Subject(s)
Acid Sensing Ion Channel Blockers/pharmacology , Acid Sensing Ion Channels/immunology , Apoptosis/drug effects , Brain Infarction/drug therapy , Single-Chain Antibodies/pharmacology , Acid Sensing Ion Channel Blockers/chemistry , Acid Sensing Ion Channel Blockers/therapeutic use , Animals , Brain/blood supply , Brain/cytology , Brain/drug effects , Brain Infarction/etiology , CHO Cells , Cerebral Arteries , Cricetulus , Disease Models, Animal , Humans , Hydrogen-Ion Concentration , Male , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy/methods , Neurons/drug effects , Neurons/physiology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/therapeutic use
2.
Angew Chem Int Ed Engl ; 58(27): 9254-9261, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31020752

ABSTRACT

DNA encoded chemical libraries (DELs) link the powers of genetics and chemical synthesis via combinatorial optimization. Through combinatorial chemistry, DELs can grow to the unprecedented size of billions to trillions. To take full advantage of the DEL approach, linking the power of genetics directly to chemical structures would offer even greater diversity in a finite chemical world. Natural products have evolved an incredible structural diversity along with their biological evolution. Herein, we used traditional Chinese medicines (TCMs) as examples in a late-stage modification toolbox approach to annotate these complex organic compounds with amplifiable DNA barcodes, which could be easily incorporated into a DEL. The method of end-products labeling also generates a cluster of isomers with a single DNA tag at different sites. These isomers provide an additional spatial diversity for multiple accessible pockets of targeted proteins. Notably, a novel PARP1 inhibitor from TCM has been identified from the natural products enriched DEL (nDEL).


Subject(s)
Biological Products/metabolism , DNA/chemistry , Biological Products/chemistry , Click Chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/metabolism , Humans , Isomerism , Luteolin/chemistry , Medicine, Chinese Traditional , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
3.
Hum Mol Genet ; 24(9): 2641-8, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25628337

ABSTRACT

Mutations in the GJB2 gene, which encodes the gap junction protein connexin 26 (Cx26), are the primary cause of hereditary prelingual hearing impairment. Here, the p.Cys169Tyr missense mutation of Cx26 (Cx26C169Y), previously classified as a polymorphism, has been identified as causative of severe hearing loss in two Qatari families. We have analyzed the effect of this mutation using a combination of confocal immunofluorescence microscopy and molecular dynamics simulations. At the cellular level, our results show that the mutant protein fails to form junctional channels in HeLa transfectants despite being correctly targeted to the plasma membrane. At the molecular level, this effect can be accounted for by disruption of the disulfide bridge that Cys169 forms with Cys64 in the wild-type structure (Cx26WT). The lack of the disulfide bridge in the Cx26C169Y protein causes a spatial rearrangement of two important residues, Asn176 and Thr177. In the Cx26WT protein, these residues play a crucial role in the intra-molecular interactions that permit the formation of an intercellular channel by the head-to-head docking of two opposing hemichannels resident in the plasma membrane of adjacent cells. Our results elucidate the molecular pathogenesis of hereditary hearing loss due to the connexin mutation and facilitate the understanding of its role in both healthy and affected individuals.


Subject(s)
Alleles , Amino Acid Substitution , Connexins/genetics , Mutation, Missense , Cell Line , Connexin 26 , Connexins/chemistry , Connexins/metabolism , Female , Gap Junctions/genetics , Gene Expression , Genotype , Hearing Loss/diagnosis , Hearing Loss/genetics , Humans , Immunohistochemistry , Male , Models, Molecular , Pedigree , Polymorphism, Genetic , Protein Conformation , Protein Interaction Domains and Motifs , Transfection
4.
Adv Sci (Weinh) ; : e2401845, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757623

ABSTRACT

The limited success of current targeted therapies for pancreatic cancer underscores an urgent demand for novel treatment modalities. The challenge in mitigating this malignancy can be attributed to the digestive organ expansion factor (DEF), a pivotal yet underexplored factor in pancreatic tumorigenesis. The study uses a blend of in vitro and in vivo approaches, complemented by the theoretical analyses, to propose DEF as a promising anti-tumor target. Analysis of clinical samples reveals that high expression of DEF is correlated with diminished survival in pancreatic cancer patients. Crucially, the depletion of DEF significantly impedes tumor growth. The study further discovers that DEF binds to p65, shielding it from degradation mediated by the ubiquitin-proteasome pathway in cancer cells. Based on these findings and computational approaches, the study formulates a DEF-mimicking peptide, peptide-031, designed to disrupt the DEF-p65 interaction. The effectiveness of peptide-031 in inhibiting tumor proliferation has been demonstrated both in vitro and in vivo. This study unveils the oncogenic role of DEF while highlighting its prognostic value and therapeutic potential in pancreatic cancer. In addition, peptide-031 is a promising therapeutic agent with potent anti-tumor effects.

5.
Int J Biol Macromol ; 253(Pt 7): 127199, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37793526

ABSTRACT

The tremendous success of immune checkpoint blockade (ICB) therapy has raised the great demand for the development of predictive biomarkers. A recent cancer genomic study suggested that human leukocyte antigen (HLA)-B*44:02 and HLA-B*15:01 alleles may act as potential biomarkers for ICB therapies, however, the underlying molecular mechanisms remain largely elusive. Here, we investigated the molecular origins of differential responses to ICB therapies for four representative HLA alleles: HLA-B*44:02, HLA-B*15:01, HLA-B*07:02, and HLA-B*53:01, using extensive all-atom molecular dynamics simulations. We first demonstrated that the relatively more rigid peptide-binding groove of HLA-B*15:01, than those in the other three HLA alleles, may result in challenges in its recognition with T-cell receptors. Specifically, the "bridge" structure in HLA-B*15:01 is stabilized through both intramolecular electrostatic interactions between the HLA residues and intermolecular interactions between the HLA and the antigenic peptide. These observations were further confirmed by in silico mutagenesis studies, as well as simulations of several other HLA-B*15:01-peptide complexes. By contrast, the "bridge" structure is either completely absent in HLA-B*44:02 or easily perturbed in HLA-B*07:02 and HLA-B*53:01. Our findings provide detailed structural and mechanistic insights into how HLA genotype influences ICB responses and may have important implications for developing immune markers.


Subject(s)
HLA-B Antigens , Neoplasms , Humans , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , Peptides/chemistry , Immunity , Biomarkers
6.
J Phys Chem B ; 127(15): 3364-3371, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37018047

ABSTRACT

Poly-l-lysine (PLL) dendrimers have emerged as promising nanomaterials for gene/drug delivery, bioimaging, and biosensing due to their high efficacy and biocompatibility. In our previous works, we successfully synthesized two categories of PLL dendrimers with two different cores: the planar-shaped perylenediimide and the cubic-shaped polyhedral oligomeric silsesquioxanes. However, the effect of these two topologies on the PLL dendrimer structures is not clearly understood. In this work, we carried out in-depth investigations on the influence of core topologies on the PLL dendrimer structures using molecular dynamics simulations. We show that, even at high generations, the core topology affects the shape and branch distribution of the PLL dendrimer, which may further determine their performance. Moreover, our findings suggest that the core topology on the PLL dendrimer structures can be further designed and improved to fully exploit and utilize their potential in biomedical applications.


Subject(s)
Dendrimers , Models, Molecular , Molecular Conformation , Dendrimers/chemistry , Polylysine/chemistry , Water/chemistry , Diffusion
7.
Nat Commun ; 14(1): 7699, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052788

ABSTRACT

Protocell fitness under extreme prebiotic conditions is critical in understanding the origin of life. However, little is known about protocell's survival and fitness under prebiotic radiations. Here we present a radioresistant protocell model based on assembly of two types of coacervate droplets, which are formed through interactions of inorganic polyphosphate (polyP) with divalent metal cation and cationic tripeptide, respectively. Among the coacervate droplets, only the polyP-Mn droplet is radiotolerant and provides strong protection for recruited proteins. The radiosensitive polyP-tripeptide droplet sequestered with both proteins and DNA could be encapsulated inside the polyP-Mn droplet, and form into a compartmentalized protocell. The protocell protects the inner nucleoid-like condensate through efficient reactive oxygen species' scavenging capacity of intracellular nonenzymic antioxidants including Mn-phosphate and Mn-peptide. Our results demonstrate a radioresistant protocell model with redox reaction system in response to ionizing radiation, which might enable the protocell fitness to prebiotic radiation on the primitive Earth preceding the emergence of enzyme-based fitness. This protocell might also provide applications in synthetic biology as bioreactor or drug delivery system.


Subject(s)
Artificial Cells , Artificial Cells/metabolism , Peptides , Proteins , Minerals
8.
Front Immunol ; 14: 1259521, 2023.
Article in English | MEDLINE | ID: mdl-37954611

ABSTRACT

Tuft cells are a type of rare epithelial cells that have been recently found to utilize taste signal transduction pathways to detect and respond to various noxious stimuli and pathogens, including allergens, bacteria, protists and parasitic helminths. It is, however, not fully understood how many different types of pathogens they can sense or what exact molecular mechanisms they employ to initiate targeted responses. In this study, we found that an anaerobic pathobiont microbe, Ruminococcus gnavus (R. gnavus), can induce tuft cell proliferation in the proximal colon whereas the microbe's lysate can stimulate these proximal colonic tuft cells to release interleukin-25 (IL-25). Nullification of the Gng13 and Trpm5 genes that encode the G protein subunit Gγ13 and transient receptor potential ion channel Trpm5, respectively, or application of the Tas2r inhibitor allyl isothiocyanate (AITC), G protein Gßγ subunit inhibitor Gallein or the phospholipase Cß2 (PLCß2) inhibitor U73122 reduces R. gnavus-elicited tuft cell proliferation or IL-25 release or both. Furthermore, Gng13 conditional knockout or Trpm5 knockout diminishes the expression of gasdermins C2, C3 and C4, and concomitantly increases the activated forms of caspases 3, 8 and 9 as well as the number of TUNEL-positive apoptotic cells in the proximal colon. Together, our data suggest that taste signal transduction pathways are not only involved in the detection of R. gnavus infection, but also contribute to helping maintain gasdermin expression and prevent apoptotic cell death in the proximal colon, and these findings provide another strategy to combat R. gnavus infection and sheds light on new roles of taste signaling proteins along with gasdermins in protecting the integrity of the proximal colonic epithelium.


Subject(s)
Taste , Transient Receptor Potential Channels , Ruminococcus , Signal Transduction , Colon
9.
Front Mol Biosci ; 10: 1184200, 2023.
Article in English | MEDLINE | ID: mdl-37664184

ABSTRACT

Introduction: The ζ subunit is a potent inhibitor of the F1FO-ATPase of Paracoccus denitrificans (PdF1FO-ATPase) and related α-proteobacteria different from the other two canonical inhibitors of bacterial (ε) and mitochondrial (IF1) F1FO-ATPases. ζ mimics mitochondrial IF1 in its inhibitory N-terminus, blocking the PdF1FO-ATPase activity as a unidirectional pawl-ratchet and allowing the PdF1FO-ATP synthase turnover. ζ is essential for the respiratory growth of P. denitrificans, as we showed by a Δζ knockout. Given the vital role of ζ in the physiology of P. denitrificans, here, we assessed the evolution of ζ across the α-proteobacteria class. Methods: Through bioinformatic, biochemical, molecular biology, functional, and structural analyses of several ζ subunits, we confirmed the conservation of the inhibitory N-terminus of ζ and its divergence toward its C-terminus. We reconstituted homologously or heterologously the recombinant ζ subunits from several α-proteobacteria into the respective F-ATPases, including free-living photosynthetic, facultative symbiont, and intracellular facultative or obligate parasitic α-proteobacteria. Results and discussion: The results show that ζ evolved, preserving its inhibitory function in free-living α-proteobacteria exposed to broad environmental changes that could compromise the cellular ATP pools. However, the ζ inhibitory function was diminished or lost in some symbiotic α-proteobacteria where ζ is non-essential given the possible exchange of nutrients and ATP from hosts. Accordingly, the ζ gene is absent in some strictly parasitic pathogenic Rickettsiales, which may obtain ATP from the parasitized hosts. We also resolved the NMR structure of the ζ subunit of Sinorhizobium meliloti (Sm-ζ) and compared it with its structure modeled in AlphaFold. We found a transition from a compact ordered non-inhibitory conformation into an extended α-helical inhibitory N-terminus conformation, thus explaining why the Sm-ζ cannot exert homologous inhibition. However, it is still able to inhibit the PdF1FO-ATPase heterologously. Together with the loss of the inhibitory function of α-proteobacterial ε, the data confirm that the primary inhibitory function of the α-proteobacterial F1FO-ATPase was transferred from ε to ζ and that ζ, ε, and IF1 evolved by convergent evolution. Some key evolutionary implications on the endosymbiotic origin of mitochondria, as most likely derived from α-proteobacteria, are also discussed.

10.
Cell Rep Med ; 4(11): 101266, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37944530

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.


Subject(s)
COVID-19 , Humans , Monocytes , Pandemics , Receptor for Advanced Glycation End Products/genetics , SARS-CoV-2
11.
Biomolecules ; 12(9)2022 09 13.
Article in English | MEDLINE | ID: mdl-36139124

ABSTRACT

The steady increase in computational power in the last 50 years is opening unprecedented opportunities in biology, as computer simulations of biological systems have become more accessible and can reproduce experimental results more accurately. Here, we wanted to test the ability of computer simulations to replace experiments in the limited but practically useful scope of improving the biochemical characteristics of the abN48 antibody, a nanomolar antagonist of the CXC chemokine receptor 2 (CXCR2) that was initially selected from a combinatorial antibody library. Our results showed a good correlation between the computed binding energies of the antibody to the peptide target and the experimental binding affinities. Moreover, we showed that it is possible to design new antibody sequences in silico with a higher affinity to the desired target using a Monte Carlo Metropolis algorithm. The newly designed sequences had an affinity comparable to the best ones obtained using in vitro affinity maturation and could be obtained within a similar timeframe. The methodology proposed here could represent a valid alternative for improving antibodies in cases in which experiments are too expensive or technically tricky and could open an opportunity for designing antibodies for targets that have been elusive so far.


Subject(s)
Antibodies, Monoclonal , Receptors, Interleukin-8B , Computer Simulation , Humans , Protein Binding , Receptors, Interleukin-8B/metabolism
12.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166047, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33418036

ABSTRACT

BACKGROUND: Connexin hemichannels have been implicated in pathology-promoting conditions, including inflammation, numerous widespread human diseases, including cancer and diabetes, and several rare diseases linked to pathological point mutations. METHODS: We analysed the literature focusing on antibodies capable of modulating hemichannel function, highlighting generation methods, applications to basic biomedical research and translational potential. RESULTS: Anti-hemichannel antibodies generated over the past 3 decades targeted mostly connexin 43, with a focus on cancer treatment. A slow transition from relatively unselective polyclonal antibodies to more selective monoclonal antibodies resulted in few products with interesting characteristics that are under evaluation for clinical trials. Selection of antibodies from combinatorial phage-display libraries, has permitted to engineer a monoclonal antibody that binds to and blocks pathological hemichannels formed by connexin 26, 30 and 32. CONCLUSIONS: All known antibodies that modulate connexin hemichannels target the two small extracellular loops of the connexin proteins. The extracellular region of different connexins is highly conserved, and few residues of each connexins are exposed. The search for new antibodies may develop an unprecedented potential for therapeutic applications, as it may benefit tremendously from novel whole-cell screening platforms that permit in situ selection of antibodies against membrane proteins in native state. The demonstrated efficacy of mAbs in reaching and modulating hemichannels in vivo, together with their relative specificity for connexins overlapping epitopes, should hopefully stimulate an interest for widening the scope of anti-hemichannel antibodies. There is no shortage of currently incurable diseases for which therapeutic intervention may benefit from anti-hemichannel antibodies capable of modulating hemichannel function selectively and specifically.


Subject(s)
Antibodies/pharmacology , Connexins/antagonists & inhibitors , Drug Discovery , Animals , Antibodies/immunology , Antibodies/therapeutic use , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Connexin 43/antagonists & inhibitors , Connexin 43/chemistry , Connexin 43/immunology , Connexins/chemistry , Connexins/immunology , Humans , Models, Molecular , Neoplasms/drug therapy , Neoplasms/immunology
13.
Front Immunol ; 12: 730099, 2021.
Article in English | MEDLINE | ID: mdl-34858396

ABSTRACT

SARS-CoV-2 infects humans and causes Coronavirus disease 2019 (COVID-19). The S1 domain of the spike glycoprotein of SARS-CoV-2 binds to human angiotensin-converting enzyme 2 (hACE2) via its receptor-binding domain, while the S2 domain facilitates fusion between the virus and the host cell membrane for entry. The spike glycoprotein of circulating SARS-CoV-2 genomes is a mutation hotspot. Some mutations may affect the binding affinity for hACE2, while others may modulate S-glycoprotein expression, or they could result in a virus that can escape from antibodies generated by infection with the original variant or by vaccination. Since a large number of variants are emerging, it is of vital importance to be able to rapidly assess their characteristics: while changes of binding affinity alone do not always cause direct advantages for the virus, they still can provide important insights on where the evolutionary pressure is directed. Here, we propose a simple and cost-effective computational protocol based on Molecular Dynamics simulations to rapidly screen the ability of mutated spike protein to bind to the hACE2 receptor and selected neutralizing biomolecules. Our results show that it is possible to achieve rapid and reliable predictions of binding affinities. A similar approach can be used to perform preliminary screenings of the potential effects of S-RBD mutations, helping to prioritize the more time-consuming and expensive experimental work.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/immunology , Computer Simulation , Molecular Dynamics Simulation , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibody Affinity , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
14.
Cells ; 9(11)2020 11 20.
Article in English | MEDLINE | ID: mdl-33233551

ABSTRACT

Nuclear shape modulates cell behavior and function, while aberrant nuclear morphologies correlate with pathological phenotype severity. Nevertheless, functions of specific nuclear morphological features and underlying molecular mechanisms remain poorly understood. Here, we investigate a nucleus-intrinsic mechanism driving nuclear lobulation and segmentation concurrent with granulocyte specification, independently from extracellular forces and cytosolic cytoskeleton contributions. Transcriptomic regulation of cholesterol biosynthesis is equally concurrent with nuclear remodeling. Its putative role as a regulatory element is supported by morphological aberrations observed upon pharmacological impairment of several enzymatic steps of the pathway, most prominently the sterol ∆14-reductase activity of laminB-receptor and protein prenylation. Thus, we support the hypothesis of a nuclear-intrinsic mechanism for nuclear shape control with the putative involvement of the recently discovered GGTase III complex. Such process could be independent from or complementary to the better studied cytoskeleton-based nuclear remodeling essential for cell migration in both physiological and pathological contexts such as immune system function and cancer metastasis.


Subject(s)
Cytoskeleton/metabolism , Granulocytes/metabolism , Protein Prenylation/genetics , HL-60 Cells , Humans , Models, Molecular
15.
EBioMedicine ; 57: 102825, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32553574

ABSTRACT

BACKGROUND: Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS: We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS: Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION: Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.


Subject(s)
Antibodies/pharmacology , Connexin 30/genetics , Connexins/genetics , Ectodermal Dysplasia/genetics , Adenosine Triphosphate/genetics , Animals , Cell Proliferation/drug effects , Connexin 30/antagonists & inhibitors , Connexin 30/immunology , Connexins/antagonists & inhibitors , Connexins/immunology , Disease Models, Animal , Ectodermal Dysplasia/drug therapy , Ectodermal Dysplasia/immunology , Epidermis/drug effects , Epidermis/growth & development , Epidermis/metabolism , Gap Junctions/genetics , Gap Junctions/immunology , Gap Junctions/pathology , Gene Expression Regulation/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/immunology , Mice , Mutation/genetics
16.
Front Physiol ; 10: 392, 2019.
Article in English | MEDLINE | ID: mdl-31263420

ABSTRACT

Connexin hemichannels, which are plasma membrane hexameric channels (connexons) composed of connexin protein protomers, have been implicated in a host of physiological processes and pathological conditions. A number of single point pathological mutations impart a "leaky" character to the affected hemichannels, i.e., make them more active or hyperactive, suggesting that normal physiological condition could be recovered using selective hemichannel inhibitors. Recently, a human-derived monoclonal antibody named abEC1.1 has been shown to inhibit both wild type and hyperactive hemichannels composed of human (h) connexin 26 (hCx26) subunits. The aims of this work were (1) to characterize further the ability of abEC1.1 to selectively modulate connexin hemichannel function and (2) to assess its in vitro stability in view of future translational applications. In silico analysis of abEC1.1 interaction with the hCx26 hemichannel identified critically important extracellular domain amino acids that are conserved in connexin 30 (hCx30) and connexin 32 (hCx32). Patch clamp experiments performed in HeLa DH cells confirmed the inhibition efficiency of abEC1.1 was comparable for hCx26, hCx30 and hCx32 hemichannels. Of note, even a single amino acid difference in the putative binding region reduced drastically the inhibitory effects of the antibody on all the other tested hemichannels, namely hCx30.2/31.3, hCx30.3, hCx31, hCx31.1, hCx37, hCx43 and hCx45. Plasma membrane channels composed of pannexin 1 were not affected by abEC1.1. Finally, size exclusion chromatography assays showed the antibody does not aggregate appreciably in vitro. Altogether, these results indicate abEC1.1 is a promising tool for further translational studies.

17.
Front Mol Neurosci ; 11: 170, 2018.
Article in English | MEDLINE | ID: mdl-29904340

ABSTRACT

Connexin channels play numerous essential roles in virtually every organ by mediating solute exchange between adjacent cells, or between cytoplasm and extracellular milieu. Our understanding of the structure-function relationship of connexin channels relies on X-ray crystallographic data for human connexin 26 (hCx26) intercellular gap junction channels. Comparison of experimental data and molecular dynamics simulations suggests that the published structures represent neither fully-open nor closed configurations. To facilitate the search for alternative stable configurations, we developed a coarse grained (CG) molecular model of the hCx26 hemichannel and studied its responses to external electric fields. When challenged by a field of 0.06 V/nm, the hemichannel relaxed toward a novel configuration characterized by a widened pore and an increased bending of the second transmembrane helix (TM2) at the level of the conserved Pro87. A point mutation that inhibited such transition in our simulations impeded hemichannel opening in electrophysiology and dye uptake experiments conducted on HeLa tranfectants. These results suggest that the hCx26 hemichannel uses a global degree of freedom to transit between different configuration states, which may be shared among the whole connexin family.

18.
Front Mol Neurosci ; 10: 298, 2017.
Article in English | MEDLINE | ID: mdl-29018324

ABSTRACT

Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26), a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity. Methods: By screening a combinatorial library of human single-chain fragment variable (scFv) antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells. Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID) syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action. Conclusions: Although further studies will be necessary to validate the effect of the antibody in vivo, the methodology described here can be extended to select antibodies against hemichannels composed by other connexin isoforms and, consequently, to target other pathologies associated with hyperactive hemichannels. Our study highlights the potential of this approach and identifies connexins as therapeutic targets addressable by screening phage display libraries expressing human randomized antibodies.

19.
Front Physiol ; 5: 85, 2014.
Article in English | MEDLINE | ID: mdl-24624091

ABSTRACT

Mutations of the GJB2 gene encoding the connexin 26 (Cx26) gap junction protein, which is widely expressed in the inner ear, are the primary cause of hereditary non-syndromic hearing loss in several populations. The deafness-associated single amino acid substitution of methionine 34 (M34) in the first transmembrane helix (TM1) with a threonine (T) ensues in the production of mutant Cx26M34T channels that are correctly synthesized and assembled in the plasma membrane. However, mutant channels overexpressed in HeLa cells retain only 11% of the wild type unitary conductance. Here we extend and rationalize those findings by comparing wild type Cx26 (Cx26WT) and Cx26M34T mutant channels in silico, using molecular dynamics simulations. Our results indicate that the quaternary structure of the Cx26M34T hemichannel is altered at the level of the pore funnel due to the disruption of the hydrophobic interaction between M34 and tryptophan 3 (W3) in the N-terminal helix (NTH). Our simulations also show that external force stimuli applied to the NTHs can detach them from the inner wall of the pore more readily in the mutant than in the wild type hemichannel. These structural alterations significantly increase the free energy barrier encountered by permeating ions, correspondingly decreasing the unitary conductance of the Cx26M34T hemichannel. Our results accord with the proposal that the mutant resides most of the time in a low conductance state. However, the small displacement of the NTHs in our Cx26M34T hemichannel model is not compatible with the formation of a pore plug as in the related Cx26M34A mutant.

SELECTION OF CITATIONS
SEARCH DETAIL