Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Hum Mol Genet ; 30(23): 2286-2299, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34244757

ABSTRACT

Aortic aneurysms (AAs) are pathological dilatations of the aorta. Pathogenic variants in genes encoding for proteins of the contractile machinery of vascular smooth muscle cells (VSMCs), genes encoding proteins of the transforming growth factor beta signaling pathway and extracellular matrix (ECM) homeostasis play a role in the weakening of the aortic wall. These variants affect the functioning of VSMC, the predominant cell type in the aorta. Many variants have unknown clinical significance, with unknown consequences on VSMC function and AA development. Our goal was to develop functional assays that show the effects of pathogenic variants in aneurysm-related genes. We used a previously developed fibroblast transdifferentiation protocol to induce VSMC-like cells, which are used for all assays. We compared transdifferentiated VSMC-like cells of patients with a pathogenic variant in genes encoding for components of VSMC contraction (ACTA2, MYH11), transforming growth factor beta (TGFß) signaling (SMAD3) and a dominant negative (DN) and two haploinsufficient variants in the ECM elastic laminae (FBN1) to those of healthy controls. The transdifferentiation efficiency, structural integrity of the cytoskeleton, TGFß signaling profile, migration velocity and maximum contraction were measured. Transdifferentiation efficiency was strongly reduced in SMAD3 and FBN1 DN patients. ACTA2 and FBN1 DN cells showed a decrease in SMAD2 phosphorylation. Migration velocity was impaired for ACTA2 and MYH11 cells. ACTA2 cells showed reduced contractility. In conclusion, these assays for showing effects of pathogenic variants may be promising tools to help reclassification of variants of unknown clinical significance in AA-related genes.


Subject(s)
Actins/genetics , Aortic Aneurysm/etiology , Fibrillin-1/genetics , Myosin Heavy Chains/genetics , Smad3 Protein/genetics , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Cell Differentiation/genetics , Cell Transdifferentiation/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Models, Biological , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Smad2 Protein/metabolism
2.
Hum Mol Genet ; 29(9): 1476-1488, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32307537

ABSTRACT

Arterial tortuosity syndrome (ATS) is a recessively inherited connective tissue disorder, mainly characterized by tortuosity and aneurysm formation of the major arteries. ATS is caused by loss-of-function mutations in SLC2A10, encoding the facilitative glucose transporter GLUT10. Former studies implicated GLUT10 in the transport of dehydroascorbic acid, the oxidized form of ascorbic acid (AA). Mouse models carrying homozygous Slc2a10 missense mutations did not recapitulate the human phenotype. Since mice, in contrast to humans, are able to intracellularly synthesize AA, we generated a novel ATS mouse model, deficient for Slc2a10 as well as Gulo, which encodes for L-gulonolactone oxidase, an enzyme catalyzing the final step in AA biosynthesis in mouse. Gulo;Slc2a10 double knock-out mice showed mild phenotypic anomalies, which were absent in single knock-out controls. While Gulo;Slc2a10 double knock-out mice did not fully phenocopy human ATS, histological and immunocytochemical analysis revealed compromised extracellular matrix formation. Transforming growth factor beta signaling remained unaltered, while mitochondrial function was compromised in smooth muscle cells derived from Gulo;Slc2a10 double knock-out mice. Altogether, our data add evidence that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined.


Subject(s)
Arteries/abnormalities , Ascorbic Acid Deficiency/genetics , Glucose Transport Proteins, Facilitative/genetics , Joint Instability/genetics , L-Gulonolactone Oxidase/genetics , Skin Diseases, Genetic/genetics , Vascular Malformations/genetics , Animals , Arteries/metabolism , Arteries/pathology , Ascorbic Acid/biosynthesis , Ascorbic Acid/genetics , Ascorbic Acid Deficiency/metabolism , Ascorbic Acid Deficiency/pathology , Disease Models, Animal , Homozygote , Humans , Joint Instability/metabolism , Joint Instability/pathology , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Respiration/genetics , Signal Transduction/genetics , Skin Diseases, Genetic/metabolism , Skin Diseases, Genetic/pathology , Vascular Malformations/metabolism , Vascular Malformations/pathology
3.
Int J Mol Sci ; 23(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008861

ABSTRACT

Thoracic aortic aneurysm is a potentially life-threatening disease with a strong genetic contribution. Despite identification of multiple genes involved in aneurysm formation, little is known about the specific underlying mechanisms that drive the pathological changes in the aortic wall. The aim of our study was to unravel the molecular mechanisms underlying aneurysm formation in Marfan syndrome (MFS). We collected aortic wall samples from FBN1 variant-positive MFS patients (n = 6) and healthy donor hearts (n = 5). Messenger RNA (mRNA) expression levels were measured by RNA sequencing and compared between MFS patients and controls, and between haploinsufficient (HI) and dominant negative (DN) FBN1 variants. Immunohistochemical staining, proteomics and cellular respiration experiments were used to confirm our findings. FBN1 mRNA expression levels were highly variable in MFS patients and did not significantly differ from controls. Moreover, we did not identify a distinctive TGF-ß gene expression signature in MFS patients. On the contrary, differential gene and protein expression analysis, as well as vascular smooth muscle cell respiration measurements, pointed toward inflammation and mitochondrial dysfunction. Our findings confirm that inflammatory and mitochondrial pathways play important roles in the pathophysiological processes underlying MFS-related aortic disease, providing new therapeutic options.


Subject(s)
Aortic Diseases/genetics , Genomics , Marfan Syndrome/genetics , Adult , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/pathology , Cell Respiration , Female , Fibrillin-1/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Marfan Syndrome/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction , Transforming Growth Factor beta/metabolism
4.
NPJ Aging ; 10(1): 31, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902222

ABSTRACT

Aortic aneurysms are dilatations of the aorta that can rupture when left untreated. We used the aneurysmal Fibulin-4R/R mouse model to further unravel the underlying mechanisms of aneurysm formation. RNA sequencing of 3-month-old Fibulin-4R/R aortas revealed significant upregulation of senescence-associated secretory phenotype (SASP) factors and key senescence factors, indicating the involvement of senescence. Analysis of aorta histology and of vascular smooth muscle cells (VSMCs) in vitro confirmed the senescent phenotype of Fibulin-4R/R VSMCs by revealing increased SA-ß-gal, p21, and p16 staining, increased IL-6 secretion, increased presence of DNA damage foci and increased nuclei size. Additionally, we found that p21 luminescence was increased in the dilated aorta of Fibulin-4R/R|p21-luciferase mice. Our studies identify a cellular aging cascade in Fibulin-4 aneurysmal disease, by revealing that Fibulin-4R/R aortic VSMCs have a pronounced SASP and a senescent phenotype that may underlie aortic wall degeneration. Additionally, we demonstrated the therapeutic effect of JAK/STAT and TGF-ß pathway inhibition, as well as senolytic treatment on Fibulin-4R/R VSMCs in vitro. These findings can contribute to improved therapeutic options for aneurysmal disease aimed at reducing senescent cells.

5.
Cell Signal ; 58: 65-78, 2019 06.
Article in English | MEDLINE | ID: mdl-30844428

ABSTRACT

Fibulin-4 is an extracellular matrix (ECM) protein essential for elastogenesis and mutations in this protein lead to aneurysm formation. In this study, we isolated vascular smooth muscle cells (VSMCs) from mice with reduced fibulin-4 protein expression (Fibulin-4R/R) and from mice with a smooth muscle cell specific deletion of the Fibulin-4 gene (Fibulin-4f/-/SM22Cre+). We subsequently analyzed and compared the molecular consequences of reduced Fibulin-4 expression versus total ablation of Fibulin-4 expression with regard to effects on the SMC specific contractile machinery, cellular migration and TGFß signaling. Analysis of the cytoskeleton showed that while Fibulin-4f/-/SM22Cre+ VSMCs lack smooth muscle actin (SMA) fibers, Fibulin-4R/R VSMCs were able to form SMA fibers. Furthermore, Fibulin-4f/-/SM22Cre+ VSMCs showed a decreased pCofilin to Cofilin ratio, suggesting increased actin depolymerization, while Fibulin-4R/R VSMCs did not display this decrease. Yet, both Fibulin-4 mutant VSMCs showed decreased migration. We found increased activation of TGFß signaling in Fibulin-4R/R VSMCs. However, TGFß signaling was not increased in Fibulin-4f/-/SM22Cre+ VSMCs. From these results we conclude that both reduction and absence of Fibulin-4 leads to structural and functional impairment of the SMA cytoskeleton. However, while reduced levels of Fibulin-4 result in increased TGFß activation, complete absence of Fibulin-4 does not result in increased TGFß activation. Since both mouse models show thoracic aortic aneurysm formation, we conclude that not only hampered TGFß signaling, but also SMA cytoskeleton dynamics play an important role in aortic aneurysmal disease.


Subject(s)
Cytoskeleton/metabolism , Extracellular Matrix Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Cell Movement , Cells, Cultured , Cytoskeleton/ultrastructure , Extracellular Matrix Proteins/metabolism , Gene Deletion , Mice , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/ultrastructure
6.
Cardiovasc Res ; 114(13): 1776-1793, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29931197

ABSTRACT

Aim: Thoracic aortic aneurysms are a life-threatening condition often diagnosed too late. To discover novel robust biomarkers, we aimed to better understand the molecular mechanisms underlying aneurysm formation. Methods and results: In Fibulin-4R/R mice, the extracellular matrix protein Fibulin-4 is 4-fold reduced, resulting in progressive ascending aneurysm formation and early death around 3 months of age. We performed proteomics and genomics studies on Fibulin-4R/R mouse aortas. Intriguingly, we observed alterations in mitochondrial protein composition in Fibulin-4R/R aortas. Consistently, functional studies in Fibulin-4R/R vascular smooth muscle cells (VSMCs) revealed lower oxygen consumption rates, but increased acidification rates. Yet, mitochondria in Fibulin-4R/R VSMCs showed no aberrant cytoplasmic localization. We found similar reduced mitochondrial respiration in Tgfbr-1M318R/+ VSMCs, a mouse model for Loeys-Dietz syndrome (LDS). Interestingly, also human fibroblasts from Marfan (FBN1) and LDS (TGFBR2 and SMAD3) patients showed lower oxygen consumption. While individual mitochondrial Complexes I-V activities were unaltered in Fibulin-4R/R heart and muscle, these tissues showed similar decreased oxygen consumption. Furthermore, aortas of aneurysmal Fibulin-4R/R mice displayed increased reactive oxygen species (ROS) levels. Consistent with these findings, gene expression analyses revealed dysregulation of metabolic pathways. Accordingly, blood ketone levels of Fibulin-4R/R mice were reduced and liver fatty acids were decreased, while liver glycogen was increased, indicating dysregulated metabolism at the organismal level. As predicted by gene expression analysis, the activity of PGC1α, a key regulator between mitochondrial function and organismal metabolism, was downregulated in Fibulin-4R/R VSMCs. Increased TGFß reduced PGC1α levels, indicating involvement of TGFß signalling in PGC1α regulation. Activation of PGC1α restored the decreased oxygen consumption in Fibulin-4R/R VSMCs and improved their reduced growth potential, emphasizing the importance of this key regulator. Conclusion: Our data indicate altered mitochondrial function and metabolic dysregulation, leading to increased ROS levels and altered energy production, as a novel mechanism, which may contribute to thoracic aortic aneurysm formation.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Energy Metabolism , Extracellular Matrix Proteins/metabolism , Mitochondria, Muscle/metabolism , Muscle, Smooth, Vascular/metabolism , Mutation , Myocytes, Smooth Muscle/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aortic Aneurysm, Thoracic/pathology , Cell Respiration , Cells, Cultured , Disease Models, Animal , Extracellular Matrix Proteins/genetics , Humans , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Muscle/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Reactive Oxygen Species/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL