Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nature ; 574(7777): 259-263, 2019 10.
Article in English | MEDLINE | ID: mdl-31554973

ABSTRACT

Chikungunya virus (CHIKV) is a re-emerging alphavirus that is transmitted to humans by mosquito bites and causes musculoskeletal and joint pain1,2. Despite intensive investigations, the human cellular factors that are critical for CHIKV infection remain unknown, hampering the understanding of viral pathogenesis and the development of anti-CHIKV therapies. Here we identified the four-and-a-half LIM domain protein 1 (FHL1)3 as a host factor that is required for CHIKV permissiveness and pathogenesis in humans and mice. Ablation of FHL1 expression results in the inhibition of infection by several CHIKV strains and o'nyong-nyong virus, but not by other alphaviruses and flaviviruses. Conversely, expression of FHL1 promotes CHIKV infection in cells that do not normally express it. FHL1 interacts directly with the hypervariable domain of the nsP3 protein of CHIKV and is essential for the replication of viral RNA. FHL1 is highly expressed in CHIKV-target cells and is particularly abundant in muscles3,4. Dermal fibroblasts and muscle cells derived from patients with Emery-Dreifuss muscular dystrophy that lack functional FHL15 are resistant to CHIKV infection. Furthermore,  CHIKV infection  is undetectable in Fhl1-knockout mice. Overall, this study shows that FHL1 is a key factor expressed by the host that enables CHIKV infection and identifies the interaction between nsP3 and FHL1 as a promising target for the development of anti-CHIKV therapies.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Host-Derived Cellular Factors/metabolism , Host-Pathogen Interactions , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Muscle Proteins/metabolism , Animals , Cells, Cultured , Chikungunya Fever/drug therapy , Chikungunya virus/drug effects , Chikungunya virus/genetics , Chikungunya virus/growth & development , Female , Fibroblasts/virology , HEK293 Cells , Host-Derived Cellular Factors/genetics , Humans , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/deficiency , LIM Domain Proteins/genetics , Male , Mice , Muscle Proteins/deficiency , Muscle Proteins/genetics , Myoblasts/virology , O'nyong-nyong Virus/growth & development , O'nyong-nyong Virus/pathogenicity , Protein Binding , RNA, Viral/biosynthesis , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
2.
Mol Pharm ; 21(2): 831-844, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38174896

ABSTRACT

Tumor spheroids are promising three-dimensional (3D) in vitro tumor models for the evaluation of drug delivery methods. The design of noninvasive and targeted drug methods is required to improve the intratumoral bioavailability of chemotherapeutic drugs and reduce their adverse off-target effects. Among such methods, microbubble-assisted ultrasound (MB-assisted US) is an innovative modality for noninvasive targeted drug delivery. The aim of the present study is to evaluate the efficacy of this US modality for the delivery of bleomycin, doxorubicin, and irinotecan in colorectal cancer (CRC) spheroids. MB-assisted US permeabilized the CRC spheroids to propidium iodide, which was used as a drug model without affecting their growth and viability. Histological analysis and electron microscopy revealed that MB-assisted US affected only the peripheral layer of the CRC spheroids. The acoustically mediated bleomycin delivery induced a significant decrease in CRC spheroid growth in comparison to spheroids treated with bleomycin alone. However, this US modality did not improve the therapeutic efficacy of doxorubicin and irinotecan on CRC spheroids. In conclusion, this study demonstrates that tumor spheroids are a relevant approach to evaluate the efficacy of MB-assisted US for the delivery of chemotherapeutics.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Irinotecan , Microbubbles , Doxorubicin/pharmacology , Bleomycin , Spheroids, Cellular , Cell Line, Tumor
3.
Cell Mol Life Sci ; 80(12): 353, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940699

ABSTRACT

The coronavirus' (CoV) membrane (M) protein is the driving force during assembly, but this process remains poorly characterized. Previously, we described two motifs in the C-tail of the Middle East respiratory syndrome CoV (MERS-CoV) M protein involved in its endoplasmic reticulum (ER) exit (211DxE213) and trans-Golgi network (TGN) retention (199KxGxYR204). Here, their function in virus assembly was investigated by two different virus-like particle (VLP) assays and by mutating both motifs in an infectious MERS-CoV cDNA clone. It was shown that the 199KxGxYR204 motif was essential for VLP and infectious virus assembly. Moreover, the mislocalization of the M protein induced by mutation of this motif prevented M-E interaction. Hampering the ER export of M by mutating its 211DxE213 motif still allowed the formation of nucleocapsid-empty VLPs, but prevented the formation of fully assembled VLPs and infectious particles. Taken together, these data show that the MERS-CoV assembly process highly depends on the correct intracellular trafficking of its M protein, and hence that not only specific protein-protein interacting motifs but also correct subcellular localization of the M protein in infected cells is essential for virus formation and should be taken into consideration when studying the assembly process.


Subject(s)
Membrane Proteins , Middle East Respiratory Syndrome Coronavirus , Membrane Proteins/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Virus Assembly/genetics
4.
J Biol Chem ; 298(1): 101500, 2022 01.
Article in English | MEDLINE | ID: mdl-34929171

ABSTRACT

In HIV, the polyprotein precursor Gag orchestrates the formation of the viral capsid. In the current view of this viral assembly, Gag forms low-order oligomers that bind to the viral genomic RNA triggering the formation of high-ordered ribonucleoprotein complexes. However, this assembly model was established using biochemical or imaging methods that do not describe the cellular location hosting Gag-gRNA complex nor distinguish gRNA packaging in single particles. Here, we studied the intracellular localization of these complexes by electron microscopy and monitored the distances between the two partners by morphometric analysis of gold beads specifically labeling Gag and gRNA. We found that formation of these viral clusters occurred shortly after the nuclear export of the gRNA. During their transport to the plasma membrane, the distance between Gag and gRNA decreases together with an increase of gRNA packaging. Point mutations in the zinc finger patterns of the nucleocapsid domain of Gag caused an increase in the distance between Gag and gRNA as well as a sharp decrease of gRNA packaged into virions. Finally, we show that removal of stem loop 1 of the 5'-untranslated region does not interfere with gRNA packaging, whereas combined with the removal of stem loop 3 is sufficient to decrease but not abolish Gag-gRNA cluster formation and gRNA packaging. In conclusion, this morphometric analysis of Gag-gRNA cluster formation sheds new light on HIV-1 assembly that can be used to describe at nanoscale resolution other viral assembly steps involving RNA or protein-protein interactions.


Subject(s)
Gene Products, gag , HIV-1 , Nucleoproteins , 5' Untranslated Regions , Gene Products, gag/genetics , Gene Products, gag/metabolism , Genomics , HIV-1/genetics , HIV-1/metabolism , Microscopy, Electron, Transmission , Nucleoproteins/genetics , Nucleoproteins/metabolism , RNA, Guide, Kinetoplastida , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Assembly/genetics
5.
PLoS Pathog ; 17(2): e1009042, 2021 02.
Article in English | MEDLINE | ID: mdl-33592065

ABSTRACT

The BK polyomavirus (BKPyV) is a ubiquitous human virus that persists in the renourinary epithelium. Immunosuppression can lead to BKPyV reactivation in the first year post-transplantation in kidney transplant recipients (KTRs) and hematopoietic stem cell transplant recipients. In KTRs, persistent DNAemia has been correlated to the occurrence of polyomavirus-associated nephropathy (PVAN) that can lead to graft loss if not properly controlled. Based on recent observations that conventional dendritic cells (cDCs) specifically infiltrate PVAN lesions, we hypothesized that those cells could play a role in BKPyV infection. We first demonstrated that monocyte-derived dendritic cells (MDDCs), an in vitro model for mDCs, captured BKPyV particles through an unconventional GRAF-1 endocytic pathway. Neither BKPyV particles nor BKPyV-infected cells were shown to activate MDDCs. Endocytosed virions were efficiently transmitted to permissive cells and protected from the antibody-mediated neutralization. Finally, we demonstrated that freshly isolated CD1c+ mDCs from the blood and kidney parenchyma behaved similarly to MDDCs thus extending our results to cells of clinical relevance. This study sheds light on a potential unprecedented CD1c+ mDC involvement in the BKPyV infection as a promoter of viral spreading.


Subject(s)
Antigens, CD1/metabolism , BK Virus/immunology , Dendritic Cells/immunology , Epithelial Cells/immunology , Glycoproteins/metabolism , Kidney/immunology , Polyomavirus Infections/immunology , Tumor Virus Infections/immunology , Antibodies, Neutralizing/immunology , Dendritic Cells/metabolism , Dendritic Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Kidney/metabolism , Kidney/virology , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Polyomavirus Infections/metabolism , Polyomavirus Infections/virology , Tumor Virus Infections/metabolism , Tumor Virus Infections/virology , Virus Replication
6.
Cell Immunol ; 384: 104658, 2023 02.
Article in English | MEDLINE | ID: mdl-36566700

ABSTRACT

Recent evidence showed that in response to elevated sodium dietary intakes, many body tissues retain Na+ ions for long periods of time and can reach concentrations up to 200 mM. This could modulate the immune system and be responsible for several diseases. However, studies brought contrasted results and the effects of external sodium on human dendritic cell (DC) responses to danger signals remain largely unknown. Considering their central role in triggering T cell response, we tested how NaCl-enriched medium influences human DCs properties. We found that DCs submitted to high extracellular Na+ concentrations up to 200 mM remain viable and maintain the expression of specific DC markers, however, their maturation, chemotaxis toward CCL19, production of pro-inflammatory cytokines and ROS in response to LPS were also partially inhibited. In line with these results, the T-cell allostimulatory capacity of DCs was also inhibited. Finally, our data indicate that high NaCl concentrations triggered the phosphorylation of SGK1 and ERK1/2 kinases. These results raised the possibility that the previously reported pro-inflammatory effects of high NaCl concentrations on T cells might be counterbalanced by a downregulation of DC activation.


Subject(s)
Lipopolysaccharides , Sodium Chloride , Humans , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Cell Differentiation , Chlorides/metabolism , Chlorides/pharmacology , Dendritic Cells , Cytokines/metabolism , Sodium/metabolism , Sodium/pharmacology , Cells, Cultured
7.
Vet Res ; 54(1): 63, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37525204

ABSTRACT

Chicken infection with Salmonella Typhimurium is an important source of foodborne human diseases. Salmonella colonizes the avian intestinal tract and more particularly the caecum, without causing symptoms. This thus poses a challenge for the prevention of foodborne transmission. Until now, studies on the interaction of Salmonella with the avian gut intestine have been limited by the absence of in vitro intestinal culture models. Here, we established intestinal crypt-derived chicken organoids to better decipher the impact of Salmonella intracellular replication on avian intestinal epithelium. Using a 3D organoid model, we observed a significantly higher replication rate of the intracellular bacteria in caecal organoids than in ileal organoids. Our model thus recreates intracellular environment, allowing Salmonella replication of avian epithelium according to the intestinal segment. Moreover, an inhibition of the cellular proliferation was observed in infected ileal and caecal organoids compared to uninfected organoids. This appears with a higher effect in ileal organoids, as well as a higher cytokine and signaling molecule response in infected ileal organoids at 3 h post-infection (hpi) than in caecal organoids that could explain the lower replication rate of Salmonella observed later at 24 hpi. To conclude, this study demonstrates that the 3D organoid is a model allowing to decipher the intracellular impact of Salmonella on the intestinal epithelium cell response and illustrates the importance of the gut segment used to purify stem cells and derive organoids to specifically study epithelial cell -Salmonella interaction.


Subject(s)
Chickens , Salmonella typhimurium , Humans , Animals , Salmonella typhimurium/physiology , Intestines , Intestinal Mucosa/microbiology , Cecum , Organoids/microbiology
8.
Cell Mol Life Sci ; 79(8): 425, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35841484

ABSTRACT

Positive single-strand RNA (+ RNA) viruses can remodel host cell membranes to induce a replication organelle (RO) isolating the replication of their genome from innate immunity mechanisms. Some of these viruses, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), induce double-membrane vesicles (DMVs) for this purpose. Viral non-structural proteins are essential for DMV biogenesis, but they cannot form without an original membrane from a host cell organelle and a significant supply of lipids. The endoplasmic reticulum (ER) and the initial mechanisms of autophagic processes have been shown to be essential for the biogenesis of SARS-CoV-2 DMVs. However, by analogy with other DMV-inducing viruses, it seems likely that the Golgi apparatus, mitochondria and lipid droplets are also involved. As for hepatitis C virus (HCV), pores crossing both membranes of SARS-CoV-2-induced DMVs have been identified. These pores presumably allow the supply of metabolites essential for viral replication within the DMV, together with the export of the newly synthesized viral RNA to form the genome of future virions. It remains unknown whether, as for HCV, DMVs with open pores can coexist with the fully sealed DMVs required for the storage of large amounts of viral RNA. Interestingly, recent studies have revealed many similarities in the mechanisms of DMV biogenesis and morphology between these two phylogenetically distant viruses. An understanding of the mechanisms of DMV formation and their role in the infectious cycle of SARS-CoV-2 may be essential for the development of new antiviral approaches against this pathogen or other coronaviruses that may emerge in the future.


Subject(s)
COVID-19 , Hepatitis C , Endoplasmic Reticulum/metabolism , Hepacivirus/genetics , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/genetics , Virus Replication
9.
Cell Mol Life Sci ; 79(12): 615, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36460928

ABSTRACT

Although hepatitis E virus (HEV) is the major leading cause of enterically transmitted viral hepatitis worldwide, many gaps remain in the understanding of the HEV lifecycle. Notably, viral factories induced by HEV have not been documented yet, and it is currently unknown whether HEV infection leads to cellular membrane modeling as many positive-strand RNA viruses. HEV genome encodes the ORF1 replicase, the ORF2 capsid protein and the ORF3 protein involved in virion egress. Previously, we demonstrated that HEV produces different ORF2 isoforms including the virion-associated ORF2i form. Here, we generated monoclonal antibodies that specifically recognize the ORF2i form and antibodies that recognize the different ORF2 isoforms. One antibody, named P1H1 and targeting the ORF2i N-terminus, recognized delipidated HEV particles from cell culture and patient sera. Importantly, AlphaFold2 modeling demonstrated that the P1H1 epitope is exposed on HEV particles. Next, antibodies were used to probe viral factories in HEV-producing/infected cells. By confocal microscopy, we identified subcellular nugget-like structures enriched in ORF1, ORF2 and ORF3 proteins and viral RNA. Electron microscopy analyses revealed an unprecedented HEV-induced membrane network containing tubular and vesicular structures. We showed that these structures are dependent on ORF2i capsid protein assembly and ORF3 expression. An extensive colocalization study of viral proteins with subcellular markers, and silencing experiments demonstrated that these structures are derived from the endocytic recycling compartment (ERC) for which Rab11 is a central player. Hence, HEV hijacks the ERC and forms a membrane network of vesicular and tubular structures that might be the hallmark of HEV infection.


Subject(s)
Hepatitis E virus , Humans , Hepatitis E virus/genetics , Viral Replication Compartments , Capsid Proteins , Biological Transport , Antibodies, Monoclonal
10.
J Virol ; 95(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33298540

ABSTRACT

Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that reduces HIV-1 infectivity by an incompletely understood mechanism. We show here that viruses differing only in the envelope glycoprotein (Env) expressed on their surface have different sensitivities to IFITM3. Measurements of the sensitivity of viruses to neutralizing antibodies showed that IFITM3 increased the sensitivity of IFITM3-sensitive viruses to PG16, which targets the V1V2 loop, suggesting that IFITM3 promotes exposure of the PG16 epitope of IFITM3-sensitive viruses. Exchanges of V1V2 loops between the Env proteins of sensitive and resistant viruses revealed that V1V2 and V3 act together to modulate viral sensitivity to IFITM3. Co-immunoprecipitation experiments showed that IFITM3 interacted with both the precursor (gp160) and cleaved (gp120) forms of Env from IFITM3-sensitive viruses, but only with the precursor (gp160) form of Env from IFITM3-resistant viruses. This finding suggests that the interaction between the Env of resistant viruses and IFITM3 was inhibited once Env had been processed in the Golgi apparatus. This hypothesis was supported by immunofluorescence experiments, which showed a strong colocalization of IFITM3 with the Env of sensitive viruses, but only weak colocalization with the Env of resistant viruses on the plasma membrane of virus-producing cells. Together, these results indicate that IFITM3 interacts with Env, inducing conformational changes that may decrease viral infectivity. This antiviral action is, nevertheless, modulated by the nature of the Env, in particular its V1V2 and V3 loops, which after maturation may be able to escape this interaction.IMPORTANCE Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that reduces HIV-1 infectivity by an incompletely understood mechanism. This study aimed to elucidate the role of the HIV-1 envelope glycoprotein (Env) in determining viral susceptibility to IFITM3. We found that viruses differing only in Env expressed on their surface had different sensitivities to IFITM3. By comparing the Env proteins of viruses that were highly sensitive or resistant to IFITM3, we obtained new insight in the mechanisms by which HIV-1 escapes this protein. We showed that IFITM3 interacts with the Env protein of sensitive viruses in virion-producing cells, inducing conformational changes that may decrease viral infectivity. However, this antiviral action is modulated by the nature of Env, particularly the V1V2 and V3 loops, which may be able to escape this interaction after processing in the Golgi.

11.
Hepatology ; 74(2): 627-640, 2021 08.
Article in English | MEDLINE | ID: mdl-33665810

ABSTRACT

BACKGROUND AND AIMS: Standard hepatitis C virus (HCV) cell-culture models present an altered lipid metabolism and thus produce lipid-poor lipoviral particles (LVPs). These models are thereby weakly adapted to explore the complete natural viral life cycle. APPROACH AND RESULTS: To overcome these limitations, we used an HCV cell-culture model based on both cellular differentiation and sustained hypoxia to better mimic the host-cell environment. The long-term exposure of Huh7.5 cells to DMSO and hypoxia (1% O2 ) significantly enhanced the expression of major differentiation markers and the cellular hypoxia adaptive response by contrast with undifferentiated and normoxic (21% O2 ) standard conditions. Because hepatocyte-like differentiation and hypoxia are key regulators of intracellular lipid metabolism, we characterized the distribution of lipid droplets (LDs) and demonstrated that experimental cells significantly accumulate larger and more numerous LDs relative to standard cell-culture conditions. An immunocapture (IC) and transmission electron microscopy (TEM) method showed that differentiated and hypoxic Huh7.5 cells produced lipoproteins significantly larger than those produced by standard Huh7.5 cell cultures. The experimental cell culture model is permissive to HCV-Japanese fulminant hepatitis (JFH1) infection and produces very-low-buoyant-density LVPs that are 6-fold more infectious than LVPs formed by standard JFH1-infected Huh7.5 cells. Finally, the IC-TEM approach and antibody-neutralization experiments revealed that LVPs were highly lipidated, had a global ultrastructure and a conformation of the envelope glycoprotein complex E1E2 close to that of the ones circulating in infected individuals. CONCLUSIONS: This relevant HCV cell culture model thus mimics the complete native intracellular HCV life cycle and, by extension, can be proposed as a model of choice for studies of other hepatotropic viruses.


Subject(s)
Hepacivirus/physiology , Hepatitis C/virology , Hepatocytes/virology , Cell Culture Techniques/methods , Cell Differentiation , Cell Hypoxia , Cell Line, Tumor , Hepatocytes/physiology , Humans
12.
Plant Physiol ; 185(3): 836-856, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33793899

ABSTRACT

Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by ß-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine ß-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks ß-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of ß-glucosidase multimerization, an organization common to many defensive GH1 members.


Subject(s)
Alternative Splicing/physiology , Catharanthus/metabolism , Alternative Splicing/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Vinca Alkaloids/metabolism
13.
Virol J ; 19(1): 124, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902969

ABSTRACT

BACKGROUND: Zika virus (ZIKV), a member of the Flaviviridae family, has caused massive outbreaks of infection in tropical areas over the last decade and has now begun spreading to temperate countries. Little is currently known about the specific host factors involved in the intracellular life cycle of ZIKV. Flaviviridae viruses interact closely with host-cell lipid metabolism and associated secretory pathways. Another Flaviviridae, hepatitis C virus, is highly dependent on apolipoprotein E (ApoE) for the completion of its infectious cycle. We therefore investigated whether ZIKV also interacted with this protein. METHODS: ZIKV infections were performed on both liver and microglia derived cell lines in order to proceed to colocalization analysis and immunoprecipitation assays of ApoE and Zika envelope glycoprotein (Zika E). Transmission electron microscopy combined to immunogold labeling was also performed on the infected cells and related supernatant to study the association of ApoE and Zika E protein in the virus-induced membrane rearrangements and secreted particles, respectively. Finally, the potential of neutralization of anti-ApoE antibodies on ZIKV particles was studied. RESULT: We demonstrated an interaction between ApoE and the Zika E protein. This specific interaction was observed in virus-induced host-cell membrane rearrangements, but also on newly formed intracellular particles. The partial neutralizing effect of anti-ApoE antibody and the immunogold labeling of the two proteins on secreted virions indicates that this interaction is conserved during ZIKV intracellular trafficking and release. CONCLUSIONS: These data suggest that another member of the Flaviviridae also interacts with ApoE, indicating that this could be a common mechanism for the viruses from this family.


Subject(s)
Flaviviridae , Zika Virus Infection , Zika Virus , Antibodies, Viral , Apolipoproteins E , Cell Line , Humans , Viral Envelope Proteins , Virion/metabolism
14.
EMBO J ; 36(12): 1653-1668, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28473450

ABSTRACT

The cytopathic effects of Zika virus (ZIKV) are poorly characterized. Innate immunity controls ZIKV infection and disease in most infected patients through mechanisms that remain to be understood. Here, we studied the morphological cellular changes induced by ZIKV and addressed the role of interferon-induced transmembrane proteins (IFITM), a family of broad-spectrum antiviral factors, during viral replication. We report that ZIKV induces massive vacuolization followed by "implosive" cell death in human epithelial cells, primary skin fibroblasts and astrocytes, a phenomenon which is exacerbated when IFITM3 levels are low. It is reminiscent of paraptosis, a caspase-independent, non-apoptotic form of cell death associated with the formation of large cytoplasmic vacuoles. We further show that ZIKV-induced vacuoles are derived from the endoplasmic reticulum (ER) and dependent on the PI3K/Akt signaling axis. Inhibiting the Sec61 ER translocon in ZIKV-infected cells blocked vacuole formation and viral production. Our results provide mechanistic insight behind the ZIKV-induced cytopathic effect and indicate that IFITM3, by acting as a gatekeeper for incoming virus, restricts virus takeover of the ER and subsequent cell death.


Subject(s)
Astrocytes/virology , Cell Death , Cytopathogenic Effect, Viral , Epithelial Cells/virology , Fibroblasts/virology , Vacuoles/metabolism , Zika Virus/pathogenicity , Astrocytes/cytology , Astrocytes/physiology , Cells, Cultured , Endoplasmic Reticulum/metabolism , Epithelial Cells/cytology , Epithelial Cells/physiology , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , SEC Translocation Channels/metabolism , Signal Transduction
15.
J Virol ; 94(12)2020 06 01.
Article in English | MEDLINE | ID: mdl-32269117

ABSTRACT

West Nile virus (WNV), a member of the Flavivirus genus and currently one of the most common arboviruses worldwide, is associated with severe neurological disease in humans. Its high potential to reemerge and rapidly disseminate makes it a bona fide global public health problem. The surface membrane glycoprotein (M) has been associated with Flavivirus-induced pathogenesis. Here, we identified a key amino acid residue at position 36 of the M protein whose mutation impacts WNV secretion and promotes viral attenuation. We also identified a compensatory site at position M-43 whose mutation stabilizes M-36 substitution both in vitro and in vivo Moreover, we found that introduction of the two mutations together confers a full attenuation phenotype and protection against wild-type WNV lethal challenge, eliciting potent neutralizing-antibody production in mice. Our study thus establishes the M protein as a new viral target for rational design of attenuated WNV strains.IMPORTANCE West Nile virus (WNV) is a worldwide (re)emerging mosquito-transmitted Flavivirus causing fatal neurological diseases in humans. However, no human vaccine has been yet approved. One of the most effective live-attenuated vaccines was empirically obtained by serial passaging of wild-type yellow fever Flavivirus However, such an approach is not acceptable nowadays, and the development of a rationally designed vaccine is necessary. Generating molecular infectious clones and mutating specific residues known to be involved in Flavivirus virulence constitute a powerful tool to promote viral attenuation. WNV membrane glycoprotein is thought to carry such essential determinants. Here, we identified two residues of this protein whose substitutions are key to the full and stable attenuation of WNV in vivo, most likely through inhibition of secretion and possible alteration of morphology. Applied to other flaviviruses, this approach should help in designing new vaccines against these viruses, which are an increasing threat to global human health.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Membrane Glycoproteins/genetics , Mutation , West Nile Fever/virology , West Nile virus/genetics , Amino Acid Sequence , Animals , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Disease Models, Animal , Female , Gene Expression , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/immunology , Mice , Mice, Inbred BALB C , Models, Molecular , Neurons/immunology , Neurons/virology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Sequence Alignment , Sequence Homology, Amino Acid , Survival Analysis , Vero Cells , Viral Proteins , West Nile Fever/immunology , West Nile Fever/mortality , West Nile Fever/pathology , West Nile virus/growth & development , West Nile virus/immunology
16.
J Virol ; 94(14)2020 07 01.
Article in English | MEDLINE | ID: mdl-32376619

ABSTRACT

HIV-1 assembly occurs principally at the plasma membrane (PM) of infected cells. Gag polyprotein precursors (Pr55Gag) are targeted to the PM, and their binding is mediated by the interaction of myristoylated matrix domain and a PM-specific phosphoinositide, the phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The major synthesis pathway of PI(4,5)P2 involves the activity of phosphatidylinositol-4-phosphate 5-kinase family type 1 composed of three isoforms (PIP5K1α, PIP5K1ß, and PIP5K1γ). To examine whether the activity of a specific PIP5K1 isoform determines proper Pr55Gag localization at the PM, we compared the cellular behavior of Pr55Gag in the context of PIP5K1 inhibition using siRNAs that individually targeted each of the three isoforms in TZM-bl HeLa cells. We found that downregulation of PIP5K1α and PIP5K1γ strongly impaired the targeting of Pr55Gag to the PM with a rerouting of the polyprotein within intracellular compartments. The efficiency of Pr55Gag release was thus impaired through the silencing of these two isoforms, while PIP5K1ß is dispensable for Pr55Gag targeting to the PM. The PM mistargeting due to the silencing of PIP5K1α leads to Pr55Gag hydrolysis through lysosome and proteasome pathways, while the silencing of PIP5K1γ leads to Pr55Gag accumulation in late endosomes. Our findings demonstrated that, within the PIP5K1 family, only the PI(4,5)P2 pools produced by PIP5K1α and PIP5K1γ are involved in the Pr55Gag PM targeting process.IMPORTANCE PM specificity of Pr55Gag membrane binding is mediated through the interaction of PI(4,5)P2 with the matrix (MA) basic residues. It was shown that overexpression of a PI(4,5)P2-depleting enzyme strongly impaired PM localization of Pr55Gag However, cellular factors that control PI(4,5)P2 production required for Pr55Gag-PM targeting have not yet been characterized. In this study, by individually inhibiting PIP5K1 isoforms, we elucidated a correlation between PI(4,5)P2 metabolism pathways mediated by PIP5K1 isoforms and the targeting of Pr55Gag to the PM of TZM-bl HeLa cells. Confocal microscopy analyses of cells depleted from PIP5K1α and PIP5K1γ show a rerouting of Pr55Gag to various intracellular compartments. Notably, Pr55Gag is degraded by the proteasome and/or by the lysosomes in PIP5K1α-depleted cells, while Pr55Gag is targeted to endosomal vesicles in PIP5K1γ-depleted cells. Thus, our results highlight, for the first time, the roles of PIP5K1α and PIP5K1γ as determinants of Pr55Gag targeting to the PM.


Subject(s)
Cell Membrane/metabolism , Down-Regulation , Gene Expression Regulation, Enzymologic , HIV-1/metabolism , Phosphotransferases (Alcohol Group Acceptor)/biosynthesis , Protein Precursors/metabolism , Cell Membrane/genetics , Cell Membrane/virology , Endosomes/genetics , Endosomes/metabolism , Endosomes/virology , HIV-1/genetics , HeLa Cells , Humans , Lysosomes/genetics , Lysosomes/metabolism , Lysosomes/virology , Phosphatidylinositol 4,5-Diphosphate/genetics , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Precursors/genetics , Proteolysis
17.
BMC Microbiol ; 21(1): 153, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34020586

ABSTRACT

BACKGROUND: Salmonella can invade host cells via a type three secretion system called T3SS-1 and its outer membrane proteins, PagN and Rck. However, the mechanism of PagN-dependent invasion pathway used by Salmonella enterica, subspecies enterica serovar Typhimurium remains unclear. RESULTS: Here, we report that PagN is well conserved and widely distributed among the different species and subspecies of Salmonella. We showed that PagN of S. Typhimurium was sufficient and necessary to enable non-invasive E. coli over-expressing PagN and PagN-coated beads to bind to and invade different non-phagocytic cells. According to the literature, PagN is likely to interact with heparan sulfate proteoglycan (HSPG) as PagN-mediated invasion could be inhibited by heparin treatment in a dose-dependent manner. This report shows that this interaction is not sufficient to allow the internalization mechanism. Investigation of the role of ß1 integrin as co-receptor showed that mouse embryo fibroblasts genetically deficient in ß1 integrin were less permissive to PagN-mediated internalization. Moreover, PagN-mediated internalization was fully inhibited in glycosylation-deficient pgsA-745 cells treated with anti-ß1 integrin antibody, supporting the hypothesis that ß1 integrin and HSPG cooperate to induce the PagN-mediated internalization mechanism. In addition, use of specific inhibitors and expression of dominant-negative derivatives demonstrated that tyrosine phosphorylation and class I phosphatidylinositol 3-kinase were crucial to trigger PagN-dependent internalization, as for the Rck internalization mechanism. Finally, scanning electron microscopy with infected cells showed microvillus-like extensions characteristic of Zipper-like structure, engulfing PagN-coated beads and E. coli expressing PagN, as observed during Rck-mediated internalization. CONCLUSIONS: Our results supply new comprehensions into T3SS-1-independent invasion mechanisms of S. Typhimurium and highly indicate that PagN induces a phosphatidylinositol 3-kinase signaling pathway, leading to a Zipper-like entry mechanism as the Salmonella outer membrane protein Rck.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/metabolism , Animals , Bacterial Outer Membrane Proteins/genetics , Cell Line , Fibroblasts/metabolism , Fibroblasts/microbiology , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Mice , Salmonella Infections/genetics , Salmonella Infections/metabolism , Salmonella typhimurium/genetics , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
18.
Cell Microbiol ; 22(8): e13205, 2020 08.
Article in English | MEDLINE | ID: mdl-32216005

ABSTRACT

Hepatitis B virus (HBV) is a leading cause of cirrhosis and hepatocellular carcinoma worldwide, with 250 million individuals chronically infected. Many stages of the HBV infectious cycle have been elucidated, but the mechanisms of HBV entry remain poorly understood. The identification of the sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor and the establishment of NTCP-overexpressing hepatoma cell lines susceptible to HBV infection opens up new possibilities for investigating these mechanisms. We used HepG2-NTCP cells, and various chemical inhibitors and RNA interference (RNAi) approaches to investigate the host cell factors involved in HBV entry. We found that HBV uptake into these cells was dependent on the actin cytoskeleton and did not involve macropinocytosis or caveolae-mediated endocytosis. Instead, entry occurred via the clathrin-mediated endocytosis pathway. HBV internalisation was inhibited by pitstop-2 treatment and RNA-mediated silencing (siRNA) of the clathrin heavy chain, adaptor protein AP-2 and dynamin-2. We were able to visualise HBV entry in clathrin-coated pits and vesicles by electron microscopy (EM) and cryo-EM with immunogold labelling. These data demonstrating that HBV uses a clathrin-mediated endocytosis pathway to enter HepG2-NTCP cells increase our understanding of the complete HBV life cycle.


Subject(s)
Clathrin/metabolism , Endocytosis , Hepatitis B virus/physiology , Virus Internalization , Clathrin/ultrastructure , Cryoelectron Microscopy , Hep G2 Cells , Hepatitis B virus/ultrastructure , Host Microbial Interactions , Humans , Microscopy, Electron , RNA Interference , Viral Envelope Proteins/metabolism
19.
J Virol ; 93(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30355696

ABSTRACT

The interferon-induced transmembrane proteins (IFITMs) are a family of highly related antiviral factors that affect numerous viruses at two steps: in target cells by sequestering incoming viruses in endosomes and in producing cells by leading to the production of virions that package IFITMs and exhibit decreased infectivity. While most studies have focused on the former, little is known about the regulation of the negative imprinting of virion particle infectivity by IFITMs and about its relationship with target cell protection. Using a panel of IFITM3 mutants against HIV-1, we have explored these issues as well as others related to the biology of IFITM3, in particular virion packaging, stability, the relation to CD63/multivesicular bodies (MVBs), the modulation of cholesterol levels, and the relationship between negative imprinting of virions and target cell protection. The results that we have obtained exclude a role for cholesterol and indicate that CD63 accumulation does not directly relate to an antiviral behavior. We have defined regions that modulate the two antiviral properties of IFITM3 as well as novel domains that modulate protein stability and that, in so doing, influence the extent of its packaging into virions. The results that we have obtained, however, indicate that, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for negative imprinting. Finally, while most mutations concomitantly affect target cell protection and negative imprinting, a region in the C-terminal domain (CTD) exhibits a differential behavior, potentially highlighting the regulatory role that this domain may play in the two antiviral activities of IFITM3.IMPORTANCE IFITM proteins have been associated with the sequestration of incoming virions in endosomes (target cell protection) and with the production of virion particles that incorporate IFITMs and exhibit decreased infectivity (negative imprinting of virion infectivity). How the latter is regulated and whether these two antiviral properties are related remain unknown. By examining the behavior of a large panel of IFITM3 mutants against HIV-1, we determined that IFITM3 mutants are essentially packaged into virions proportionally to their intracellular levels of expression. However, even in the context of an IFITM-susceptible virus, IFITM3 packaging is not sufficient for the antiviral effects. Most mutations were found to concomitantly affect both antiviral properties of IFITM3, but one CTD mutant exhibited a divergent behavior, possibly highlighting a novel regulatory role for this domain. These findings thus advance our comprehension of how this class of broad antiviral restriction factors acts.


Subject(s)
HIV-1/physiology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mutation , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Virion/physiology , Cholesterol/metabolism , Endosomes , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/genetics , Protein Domains , Protein Stability , RNA-Binding Proteins/genetics , Tetraspanin 30/metabolism , Virus Assembly
20.
J Virol ; 93(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31534046

ABSTRACT

The endoplasmic reticulum (ER) is the site for Zika virus (ZIKV) replication and is central to the cytopathic effects observed in infected cells. ZIKV induces the formation of ER-derived large cytoplasmic vacuoles followed by "implosive" cell death. Little is known about the nature of the ER factors that regulate flavivirus replication. Atlastins (ATL1, -2, and -3) are dynamin-related GTPases that control the structure and the dynamics of the ER membrane. We show here that ZIKV replication is significantly decreased in the absence of ATL proteins. The appearance of infected cells is delayed, the levels of intracellular viral proteins and released virus are reduced, and the cytopathic effects are strongly impaired. We further show that ATL3 is recruited to viral replication sites and interacts with the nonstructural viral proteins NS2A and NS2B3. Thus, proteins that shape and maintain the ER tubular network ensure efficient ZIKV replication.IMPORTANCE Zika virus (ZIKV) is an emerging virus associated with Guillain-Barré syndrome, and fetal microcephaly as well as other neurological complications. There is no vaccine or specific antiviral treatment against ZIKV. We found that endoplasmic reticulum (ER)-shaping atlastin proteins (ATL1, -2, and -3), which induce ER membrane fusion, facilitate ZIKV replication. We show that ATL3 is recruited to the viral replication site and colocalize with the viral proteins NS2A and NS2B3. The results provide insights into host factors used by ZIKV to enhance its replication.


Subject(s)
Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/metabolism , Virus Replication/physiology , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Zika Virus/physiology , Antiviral Agents/pharmacology , Cytopathogenic Effect, Viral , GTP Phosphohydrolases/genetics , GTP-Binding Proteins , Gene Knockout Techniques , HeLa Cells , Humans , Membrane Proteins , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Release , Zika Virus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL