Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Clin Cancer Res ; 24(20): 5165-5177, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29941485

ABSTRACT

Purpose: Insulin-like growth factor 1 (IGF1) signaling regulates breast cancer initiation and progression and associated cancer phenotypes. We previously identified E-cadherin (CDH1) as a repressor of IGF1 signaling and in this study examined how loss of E-cadherin affects IGF1R signaling and response to anti-IGF1R/insulin receptor (InsR) therapies in breast cancer.Experimental Design: Breast cancer cell lines were used to assess how altered E-cadherin levels regulate IGF1R signaling and response to two anti-IGF1R/InsR therapies. In situ proximity ligation assay (PLA) was used to define interaction between IGF1R and E-cadherin. TCGA RNA-seq and RPPA data were used to compare IGF1R/InsR activation in estrogen receptor-positive (ER+) invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) tumors. ER+ ILC cell lines and xenograft tumor explant cultures were used to evaluate efficacy to IGF1R pathway inhibition in combination with endocrine therapy.Results: Diminished functional E-cadherin increased both activation of IGF1R signaling and efficacy to anti-IGF1R/InsR therapies. PLA demonstrated a direct endogenous interaction between IGF1R and E-cadherin at points of cell-cell contact. Increased expression of IGF1 ligand and levels of IGF1R/InsR phosphorylation were observed in E-cadherin-deficient ER+ ILC compared with IDC tumors. IGF1R pathway inhibitors were effective in inhibiting growth in ER+ ILC cell lines and synergized with endocrine therapy and similarly IGF1R/InsR inhibition reduced proliferation in ILC tumor explant culture.Conclusions: We provide evidence that loss of E-cadherin hyperactivates the IGF1R pathway and increases sensitivity to IGF1R/InsR targeted therapy, thus identifying the IGF1R pathway as a potential novel target in E-cadherin-deficient breast cancers. Clin Cancer Res; 24(20); 5165-77. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Cadherins/metabolism , Drug Resistance, Neoplasm , Insulin-Like Growth Factor I/metabolism , Receptors, Somatomedin/metabolism , Signal Transduction/drug effects , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Insulin-Like Growth Factor I/antagonists & inhibitors , Mice , RNA, Small Interfering/genetics , Receptor, IGF Type 1 , Receptors, Somatomedin/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL