ABSTRACT
Oncogene-induced DNA replication stress has been implicated as a driver of tumorigenesis. Many chromosomal rearrangements characteristic of human cancers originate from specific regions of the genome called common fragile sites (CFSs). CFSs are difficult-to-replicate loci that manifest as gaps or breaks on metaphase chromosomes (termed CFS 'expression'), particularly when cells have been exposed to replicative stress. The MUS81-EME1 structure-specific endonuclease promotes the appearance of chromosome gaps or breaks at CFSs following replicative stress. Here we show that entry of cells into mitotic prophase triggers the recruitment of MUS81 to CFSs. The nuclease activity of MUS81 then promotes POLD3-dependent DNA synthesis at CFSs, which serves to minimize chromosome mis-segregation and non-disjunction. We propose that the attempted condensation of incompletely duplicated loci in early mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest that targeting this pathway could represent a new therapeutic approach.
Subject(s)
Carcinogenesis/genetics , DNA Repair/physiology , DNA Replication , Endodeoxyribonucleases/metabolism , Gene Expression Regulation, Neoplastic , Mitosis/genetics , Stress, Physiological/genetics , Cell Line, Tumor , Chromosomal Instability , Chromosome Fragile Sites , Chromosome Segregation , DNA Polymerase III/metabolism , DNA Replication/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endonucleases/metabolism , HCT116 Cells , HT29 Cells , HeLa Cells , Humans , Models, Biological , Nondisjunction, Genetic/geneticsABSTRACT
In human cells, SUMO2 is predominantly conjugated to target proteins in response to cellular stress. Previous studies suggested that proteins conjugated to SUMO2, but not to SUMO1, could be regulated by the ubiquitin-mediated proteasome system. Hence, we set out to understand the role of the proteasome in determining the fate of proteins conjugated to SUMO2 when cells are treated with DNA replication stress conditions. We conducted a quantitative proteomic analysis in a U2OS cell line stably expressing SUMO2(Q87R) tagged with StrepHA in the presence or absence of epoxomicin (EPOX), a proteasome inhibitor. We identified subgroups of putative SUMO2 targets that were either degraded or stabilized by EPOX upon SUMO2 conjugation in response to replication stress. Interestingly, the subgroup of proteins degraded upon SUMO2 conjugation was enriched in proteins playing roles in DNA damage repair and replication, while the proteins stabilized upon SUMOylation were mainly involved in chromatin maintenance. In addition, we identified 43 SUMOylation sites in target proteins, of which 17 are located in the proximity of phosphorylated residues. Considering that DNA replication stress is a major source of genome instability, which is suggested to drive tumorigenesis and possibly aging, our data will facilitate future functional studies in the fields of DNA metabolism and cancer biology.
Subject(s)
Cell Cycle Proteins/metabolism , Cell Physiological Phenomena/physiology , DNA Replication/physiology , Proteasome Endopeptidase Complex/physiology , Proteomics/methods , Small Ubiquitin-Related Modifier Proteins/metabolism , Stress, Physiological/physiology , Blotting, Western , Cloning, Molecular , Flow Cytometry , Humans , Mass Spectrometry , Microscopy, Fluorescence , Oligopeptides/pharmacology , Proteasome Endopeptidase Complex/drug effects , Proteolysis/drug effectsABSTRACT
Most of the targeting moieties, such as antibody fragments or growth factor domains, used to construct targeted toxins for anticancer therapy derive from secretory proteins. These normally fold in the oxidative environment of the endoplasmic reticulum, and hence their folding in bacterial cells can be quite inefficient. For instance, only low amounts of properly folded antimetastatic chimera constituted by the amino-terminal fragment of human urokinase (ATF) fused to the plant ribosome-inactivating protein saporin could be recovered. ATF-saporin was instead secreted efficiently when expressed in eukaryotic cells protected from autointoxication with neutralizing anti-saporin antibodies. Pichia pastoris is a microbial eukaryotic host where these domains can fold into a transport-competent conformation and reach the extracellular medium. We show here that despite some host toxicity codon-usage optimization greatly increased the expression levels of active saporin but not those of an active-site mutant SAP-KQ in GS115 (his4) strain. The lack of any toxicity associated with expression of the latter confirmed that toxicity is due to saporin catalytic activity. Nevertheless, GS115 (his4) cells in flask culture secreted 3.5 mg/L of a histidine-tagged ATF-saporin chimera showing an IC(50) of 6 x 10(-11) M against U937 cells, thus demonstrating the suitability of this expression platform for secretion of toxic saporin-based chimeras.
Subject(s)
Immunotoxins/genetics , Immunotoxins/metabolism , N-Glycosyl Hydrolases/biosynthesis , N-Glycosyl Hydrolases/genetics , Pichia/genetics , Pichia/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Ribosome Inactivating Proteins, Type 1/biosynthesis , Ribosome Inactivating Proteins, Type 1/genetics , Urokinase-Type Plasminogen Activator/biosynthesis , Urokinase-Type Plasminogen Activator/genetics , Base Sequence , Binding Sites/genetics , Codon/genetics , DNA Primers/genetics , Gene Expression , Humans , Models, Biological , Mutagenesis, Site-Directed , N-Glycosyl Hydrolases/toxicity , Plant Proteins/toxicity , Protein Processing, Post-Translational , Recombinant Fusion Proteins/toxicity , Ribosome Inactivating Proteins, Type 1/toxicity , Saporins , Transformation, Genetic , U937 Cells , Urokinase-Type Plasminogen Activator/toxicityABSTRACT
Posttranslational modification of proteins with the small ubiquitin-like modifier (SUMO) regulates protein function in the context of cell cycle and DNA repair. The occurrence of SUMOylation is less frequent as compared to protein modification with ubiquitin, and appears to be controlled by a smaller pool of conjugating and deconjugating enzymes. Mass spectrometry has been instrumental in defining specific as well as proteome-wide views of SUMO-dependent biological processes, and several methodological approaches have been developed in the recent past. Here, we provide an overview of the latest experimental approaches to the study of SUMOylation, and also describe hands-on protocols using a combination of biochemistry and mass spectrometry-based technologies to profile proteins that are SUMOylated in human cells.
Subject(s)
Mass Spectrometry/methods , Sumoylation , DNA Repair , HumansABSTRACT
SUMOylation is a form of post-translational modification involving covalent attachment of SUMO (Small Ubiquitin-like Modifier) polypeptides to specific lysine residues in the target protein. In human cells, there are four SUMO proteins, SUMO1-4, with SUMO2 and SUMO3 forming a closely related subfamily. SUMO2/3, in contrast to SUMO1, are predominantly involved in the cellular response to certain stresses, including heat shock. Substantial evidence from studies in yeast has shown that SUMOylation plays an important role in the regulation of DNA replication and repair. Here, we report a proteomic analysis of proteins modified by SUMO2 in response to DNA replication stress in S phase in human cells. We have identified a panel of 22 SUMO2 targets with increased SUMOylation during DNA replication stress, many of which play key functions within the DNA replication machinery and/or in the cellular response to DNA damage. Interestingly, POLD3 was found modified most significantly in response to a low dose aphidicolin treatment protocol that promotes common fragile site (CFS) breakage. POLD3 is the human ortholog of POL32 in budding yeast, and has been shown to act during break-induced recombinational repair. We have also shown that deficiency of POLD3 leads to an increase in RPA-bound ssDNA when cells are under replication stress, suggesting that POLD3 plays a role in the cellular response to DNA replication stress. Considering that DNA replication stress is a source of genome instability, and that excessive replication stress is a hallmark of pre-neoplastic and tumor cells, our characterization of SUMO2 targets during a perturbed S-phase should provide a valuable resource for future functional studies in the fields of DNA metabolism and cancer biology.