Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 623(7985): 183-192, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37853125

ABSTRACT

The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated1,2, the contribution of chromosome folding to these processes remains unclear3. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1. This compartment forms by a mechanism that is consistent with polymer-polymer phase separation rather than liquid-liquid phase separation. The D compartment arises mostly in G1 phase, is independent of cohesin and is enhanced after pharmacological inhibition of DNA-dependent protein kinase (DNA-PK) or R-loop accumulation. Importantly, R-loop-enriched DNA-damage-responsive genes physically localize to the D compartment, and this contributes to their optimal activation, providing a function for DSB clustering in the DNA damage response. However, DSB-induced chromosome reorganization comes at the expense of an increased rate of translocations, also observed in cancer genomes. Overall, we characterize how DSB-induced compartmentalization orchestrates the DNA damage response and highlight the critical impact of chromosome architecture in genomic instability.


Subject(s)
Cell Compartmentation , Chromatin , DNA Damage , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Chromatin/genetics , Chromatin/metabolism , DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase/metabolism , G1 Phase , Histones/metabolism , Neoplasms/genetics , R-Loop Structures , Tumor Suppressor p53-Binding Protein 1/metabolism
2.
Nucleic Acids Res ; 51(4): 1859-1879, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36727461

ABSTRACT

Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells. Our data demonstrate that eIF4A1-dependent mRNAs contain AG-rich motifs within their 5'UTR which specifically activate eIF4A1 unwinding of local RNA structure to facilitate translation. This mode of eIF4A1 regulation is used by mRNAs encoding components of mTORC-signalling and cell cycle progression, and renders these mRNAs particularly sensitive to eIF4A1-inhibition. Mechanistically, we show that binding of eIF4A1 to AG-rich sequences leads to multimerization of eIF4A1 with eIF4A1 subunits performing distinct enzymatic activities. Our structural data suggest that RNA-binding of multimeric eIF4A1 induces conformational changes in the RNA resulting in an optimal positioning of eIF4A1 proximal to the RNA duplex enabling efficient unwinding. Our data proposes a model in which AG-motifs in the 5'UTR of eIF4A1-dependent mRNAs specifically activate eIF4A1, enabling assembly of the helicase-competent multimeric eIF4A1 complex, and positioning these complexes proximal to stable localised RNA structure allowing ribosomal subunit scanning.


Subject(s)
Eukaryotic Initiation Factor-4A , Protein Biosynthesis , 5' Untranslated Regions , Purines , RNA, Messenger/metabolism , Humans , Eukaryotic Initiation Factor-4A/metabolism
4.
Nucleic Acids Res ; 50(18): 10487-10502, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36200807

ABSTRACT

Proteins with RNA-binding activity are increasingly being implicated in DNA damage responses (DDR). Additionally, DNA:RNA-hybrids are rapidly generated around DNA double-strand breaks (DSBs), and are essential for effective repair. Here, using a meta-analysis of proteomic data, we identify novel DNA repair proteins and characterise a novel role for DDX17 in DNA repair. We found DDX17 to be required for both cell survival and DNA repair in response to numerous agents that induce DSBs. Analysis of DSB repair factor recruitment to damage sites suggested a role for DDX17 early in the DSB ubiquitin cascade. Genome-wide mapping of R-loops revealed that while DDX17 promotes the formation of DNA:RNA-hybrids around DSB sites, this role is specific to loci that have low levels of pre-existing hybrids. We propose that DDX17 facilitates DSB repair at loci that are inefficient at forming DNA:RNA-hybrids by catalysing the formation of DSB-induced hybrids, thereby allowing propagation of the damage response.


Subject(s)
DEAD-box RNA Helicases/metabolism , DNA Repair , Cell Line, Tumor , DNA Breaks, Double-Stranded , HeLa Cells , Humans , Proteomics , Ubiquitins/genetics
5.
J Hepatol ; 78(5): 1028-1036, 2023 05.
Article in English | MEDLINE | ID: mdl-36702176

ABSTRACT

BACKGROUND & AIMS: Mouse models of lineage tracing have helped to describe the important subpopulations of hepatocytes responsible for liver regeneration. However, conflicting results have been obtained from different models. Herein, we aimed to reconcile these conflicting reports by repeating a key lineage-tracing study from pericentral hepatocytes and characterising this Axin2CreERT2 model in detail. METHODS: We performed detailed characterisation of the labelled population in the Axin2CreERT2 model. We lineage traced this cell population, quantifying the labelled population over 1 year and performed in-depth phenotypic comparisons, including transcriptomics, metabolomics and analysis of proteins through immunohistochemistry, of Axin2CreERT2 mice to WT counterparts. RESULTS: We found that after careful definition of a baseline population, there are marked differences in labelling between male and female mice. Upon induced lineage tracing there was no expansion of the labelled hepatocyte population in Axin2CreERT2 mice. We found substantial evidence of disrupted homeostasis in Axin2CreERT2 mice. Offspring are born with sub-Mendelian ratios and adult mice have perturbations of hepatic Wnt/ß-catenin signalling and related metabolomic disturbance. CONCLUSIONS: We find no evidence of predominant expansion of the pericentral hepatocyte population during liver homeostatic regeneration. Our data highlight the importance of detailed preclinical model characterisation and the pitfalls which may occur when comparing across sexes and backgrounds of mice and the effects of genetic insertion into native loci. IMPACT AND IMPLICATIONS: Understanding the source of cells which regenerate the liver is crucial to harness their potential to regrow injured livers. Herein, we show that cells which were previously thought to repopulate the liver play only a limited role in physiological regeneration. Our data helps to reconcile differing conclusions drawn from results from a number of prior studies and highlights methodological challenges which are relevant to preclinical models more generally.


Subject(s)
Focal Nodular Hyperplasia , Liver Regeneration , Male , Female , Humans , Liver Regeneration/physiology , Hepatocytes/metabolism , Liver/metabolism , Homeostasis , Cell Proliferation , Axin Protein/genetics
6.
Nucleic Acids Res ; 49(1): 458-478, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33332560

ABSTRACT

The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth, integrating multiple signalling cues and pathways. Key among the downstream activities of mTOR is the control of the protein synthesis machinery. This is achieved, in part, via the co-ordinated regulation of mRNAs that contain a terminal oligopyrimidine tract (TOP) at their 5'ends, although the mechanisms by which this occurs downstream of mTOR signalling are still unclear. We used RNA-binding protein (RBP) capture to identify changes in the protein-RNA interaction landscape following mTOR inhibition. Upon mTOR inhibition, the binding of LARP1 to a number of mRNAs, including TOP-containing mRNAs, increased. Importantly, non-TOP-containing mRNAs bound by LARP1 are in a translationally-repressed state, even under control conditions. The mRNA interactome of the LARP1-associated protein PABPC1 was found to have a high degree of overlap with that of LARP1 and our data show that PABPC1 is required for the association of LARP1 with its specific mRNA targets. Finally, we demonstrate that mRNAs, including those encoding proteins critical for cell growth and survival, are translationally repressed when bound by both LARP1 and PABPC1.


Subject(s)
Autoantigens/physiology , Poly(A)-Binding Protein I/physiology , Polyribosomes/metabolism , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Ribonucleoproteins/physiology , TOR Serine-Threonine Kinases/physiology , 5' Untranslated Regions/genetics , Autoantigens/genetics , Gene Expression Regulation , Genes, Reporter , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mutagenesis, Site-Directed , Mutation, Missense , Naphthyridines/pharmacology , Point Mutation , Protein Biosynthesis/genetics , RNA Interference , RNA, Messenger/genetics , RNA-Binding Proteins/isolation & purification , RNA-Binding Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Ribonucleoproteins/genetics , SS-B Antigen
7.
Genes Dev ; 29(18): 1891-6, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26338418

ABSTRACT

We show that a common polymorphic variant in the ERCC5 5' untranslated region (UTR) generates an upstream ORF (uORF) that affects both the background expression of this protein and its ability to be synthesized following exposure to agents that cause bulky adduct DNA damage. Individuals that harbor uORF1 have a marked resistance to platinum-based agents, illustrated by the significantly reduced progression-free survival of pediatric ependymoma patients treated with such compounds. Importantly, inhibition of DNA-PKcs restores sensitivity to platinum-based compounds by preventing uORF1-dependent ERCC5 expression. Our data support a model in which a heritable 5' noncoding mRNA element influences individuals' responses to platinum-based chemotherapy.


Subject(s)
5' Untranslated Regions/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Endonucleases/genetics , Endonucleases/metabolism , Ependymoma/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Open Reading Frames/genetics , Polymorphism, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Calcium-Binding Proteins/metabolism , Cell Line , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , DNA Damage , Ependymoma/drug therapy , Ependymoma/mortality , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , HeLa Cells , Humans
8.
Diabetologia ; 64(4): 890-902, 2021 04.
Article in English | MEDLINE | ID: mdl-33501603

ABSTRACT

AIMS/HYPOTHESIS: Levels of the microRNA (miRNA) miR-126-3p are programmed cell-autonomously in visceral adipose tissue of adult offspring born to obese female C57BL/6J mice. The spectrum of miR-126-3p targets and thus the consequences of its dysregulation for adipocyte metabolism are unknown. Therefore, the aim of the current study was to identify novel targets of miR-126-3p in vitro and then establish the outcomes of their dysregulation on adipocyte metabolism in vivo using a well-established maternal obesity mouse model. METHODS: miR-126-3p overexpression in 3T3-L1 pre-adipocytes followed by pulsed stable isotope labelling by amino acids in culture (pSILAC) was performed to identify novel targets of the miRNA. Well-established bioinformatics algorithms and luciferase assays were then employed to confirm those that were direct targets of miR-126-3p. Selected knockdown experiments were performed in vitro to define the consequences of target dysregulation. Quantitative real-time PCR, immunoblotting, histology, euglycaemic-hyperinsulinaemic clamps and glucose tolerance tests were performed to determine the phenotypic and functional outcomes of maternal programmed miR-126-3p levels in offspring adipose tissue. RESULTS: The proteomic approach confirmed the identity of known targets of miR-126-3p (including IRS-1) and identified Lunapark, an endoplasmic reticulum (ER) protein, as a novel one. We confirmed by luciferase assay that Lunapark was a direct target of miR-126-3p. Overexpression of miR-126-3p in vitro led to a reduction in Lunapark protein levels and increased Perk (also known as Eif2ak3) mRNA levels and small interference-RNA mediated knockdown of Lunapark led to increased Xbp1, spliced Xbp1, Chop (also known as Ddit3) and Perk mRNA levels and an ER stress transcriptional response in 3T3-L1 pre-adipocytes. Consistent with the results found in vitro, increased miR-126-3p expression in adipose tissue from adult mouse offspring born to obese dams was accompanied by decreased Lunapark and IRS-1 protein levels and increased markers of ER stress. At the whole-body level the animals displayed glucose intolerance. CONCLUSIONS/INTERPRETATION: Concurrently targeting IRS-1 and Lunapark, a nutritionally programmed increase in miR-126-3p causes adipose tissue insulin resistance and an ER stress response, both of which may contribute to impaired glucose tolerance. These findings provide a novel mechanism by which obesity during pregnancy leads to increased risk of type 2 diabetes in the offspring and therefore identify miR-126-3p as a potential therapeutic target.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Endoplasmic Reticulum Stress , Homeodomain Proteins/metabolism , MicroRNAs/metabolism , Obesity, Maternal/metabolism , Prenatal Exposure Delayed Effects , 3T3-L1 Cells , Adipocytes/pathology , Adipose Tissue/pathology , Animals , Blood Glucose/metabolism , Disease Models, Animal , Down-Regulation , Female , Homeodomain Proteins/genetics , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Insulin Resistance , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Obesity, Maternal/genetics , Obesity, Maternal/pathology , Phenotype , Pregnancy , Signal Transduction
9.
Nature ; 517(7535): 497-500, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25383520

ABSTRACT

Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1-S6K-eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer.


Subject(s)
Cell Transformation, Neoplastic/pathology , Intestinal Neoplasms/metabolism , Intestinal Neoplasms/pathology , Multiprotein Complexes/metabolism , Peptide Chain Elongation, Translational , TOR Serine-Threonine Kinases/metabolism , Adenomatous Polyposis Coli Protein/deficiency , Adenomatous Polyposis Coli Protein/genetics , Animals , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Elongation Factor 2 Kinase/deficiency , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Enzyme Activation , Genes, APC , Intestinal Neoplasms/genetics , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Oncogene Protein p55(v-myc)/metabolism , Peptide Elongation Factor 2/metabolism , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction , Wnt Proteins/metabolism
10.
Nucleic Acids Res ; 47(15): 8224-8238, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31180491

ABSTRACT

The CCR4-NOT complex plays an important role in the translational repression and deadenylation of mRNAs. However, little is known about the specific roles of interacting factors. We demonstrate that the DEAD-box helicases eIF4A2 and DDX6 interact directly with the MA3 and MIF domains of CNOT1 and compete for binding. Furthermore, we now show that incorporation of eIF4A2 into the CCR4-NOT complex inhibits CNOT7 deadenylation activity in contrast to DDX6 which enhances CNOT7 activity. Polyadenylation tests (PAT) on endogenous mRNAs determined that eIF4A2 bound mRNAs have longer poly(A) tails than DDX6 bound mRNAs. Immunoprecipitation experiments show that eIF4A2 does not inhibit CNOT7 association with the CCR4-NOT complex but instead inhibits CNOT7 activity. We identified a CCR4-NOT interacting factor, TAB182, that modulates helicase recruitment into the CCR4-NOT complex, potentially affecting the outcome for the targeted mRNA. Together, these data show that the fate of an mRNA is dependent on the specific recruitment of either eIF4A2 or DDX6 to the CCR4-NOT complex which results in different pathways for translational repression and mRNA deadenylation.


Subject(s)
DEAD-box RNA Helicases/metabolism , Exoribonucleases/metabolism , Proto-Oncogene Proteins/metabolism , RNA, Messenger/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Binding Sites/genetics , Binding, Competitive , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , Exoribonucleases/genetics , HEK293 Cells , HeLa Cells , Humans , Models, Genetic , Protein Binding , Protein Domains , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , Repressor Proteins/genetics , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Transcription Factors/genetics
11.
Proc Natl Acad Sci U S A ; 115(24): 6219-6224, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29844156

ABSTRACT

TAp73 is a transcription factor that plays key roles in brain development, aging, and cancer. At the cellular level, TAp73 is a critical homeostasis-maintaining factor, particularly following oxidative stress. Although major studies focused on TAp73 transcriptional activities have indicated a contribution of TAp73 to cellular metabolism, the mechanisms underlying its role in redox homeostasis have not been completely elucidated. Here we show that TAp73 contributes to the oxidative stress response by participating in the control of protein synthesis. Regulation of mRNA translation occupies a central position in cellular homeostasis during the stress response, often by reducing global rates of protein synthesis and promoting translation of specific mRNAs. TAp73 depletion results in aberrant ribosomal RNA (rRNA) processing and impaired protein synthesis. In particular, polysomal profiles show that TAp73 promotes the integration of mRNAs that encode rRNA-processing factors in polysomes, supporting their translation. Concurrently, TAp73 depletion causes increased sensitivity to oxidative stress that correlates with reduced ATP levels, hyperactivation of AMPK, and translational defects. TAp73 is important for maintaining active translation of mitochondrial transcripts in response to oxidative stress, thus promoting mitochondrial activity. Our results indicate that TAp73 contributes to redox homeostasis by affecting the translational machinery, facilitating the translation of specific mitochondrial transcripts. This study identifies a mechanism by which TAp73 contributes to the oxidative stress response and describes a completely unexpected role for TAp73 in regulating protein synthesis.


Subject(s)
Oxidative Stress/genetics , Protein Biosynthesis/genetics , Tumor Protein p73/genetics , Tumor Protein p73/metabolism , A549 Cells , HEK293 Cells , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
12.
Br J Cancer ; 122(5): 613-623, 2020 03.
Article in English | MEDLINE | ID: mdl-31894141

ABSTRACT

Effective DNA repair is essential for cell survival: a failure to correctly repair damage leads to the accumulation of mutations and is the driving force for carcinogenesis. Multiple pathways have evolved to protect against both intrinsic and extrinsic genotoxic events, and recent developments have highlighted an unforeseen critical role for RNA in ensuring genome stability. It is currently unclear exactly how RNA molecules participate in the repair pathways, although many models have been proposed and it is possible that RNA acts in diverse ways to facilitate DNA repair. A number of well-documented DNA repair factors have been described to have RNA-binding capacities and, moreover, screens investigating DNA-damage repair mechanisms have identified RNA-binding proteins as a major group of novel factors involved in DNA repair. In this review, we integrate some of these datasets to identify commonalities that might highlight novel and interesting factors for future investigations. This emerging role for RNA opens up a new dimension in the field of DNA repair; we discuss its impact on our current understanding of DNA repair processes and consider how it might influence cancer progression.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/physiology , RNA/physiology , Animals , DNA/genetics , DNA/metabolism , DNA Repair/genetics , Humans , RNA/genetics , RNA/metabolism
13.
Anal Chem ; 92(24): 15781-15788, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33237744

ABSTRACT

Protein-protein interactions (PPIs) are an essential part of correct cellular functionality, making them increasingly interesting drug targets. While Förster resonance energy transfer-based methods have traditionally been widely used for PPI studies, label-free techniques have recently drawn significant attention. These methods are ideal for studying PPIs, most importantly as there is no need for labeling of either interaction partner, reducing potential interferences and overall costs. Already, several different label-free methods are available, such as differential scanning calorimetry and surface plasmon resonance, but these biophysical methods suffer from low to medium throughput, which reduces suitability for high-throughput screening (HTS) of PPI inhibitors. Differential scanning fluorimetry, utilizing external fluorescent probes, is an HTS compatible technique, but high protein concentration is needed for experiments. To improve the current concepts, we have developed a method based on time-resolved luminescence, enabling PPI monitoring even at low nanomolar protein concentrations. This method, called the protein probe technique, is based on a peptide conjugated with Eu3+ chelate, and it has already been applied to monitor protein structural changes and small molecule interactions at elevated temperatures. Here, the applicability of the protein probe technique was demonstrated by monitoring single-protein pairing and multiprotein complexes at room and elevated temperatures. The concept functionality was proven by using both artificial and multiple natural protein pairs, such as KRAS and eIF4A together with their binding partners, and C-reactive protein in a complex with its antibody.


Subject(s)
Chelating Agents/chemistry , Eukaryotic Initiation Factor-4A/chemistry , Europium/chemistry , Peptides/chemistry , Proto-Oncogene Proteins p21(ras)/chemistry , Calorimetry , Fluorescence Resonance Energy Transfer , Humans , Protein Binding , Protein Conformation , Surface Plasmon Resonance
15.
Mol Cell ; 41(4): 445-57, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21329882

ABSTRACT

Expression of the Myc oncoprotein is downregulated in response to stress signals to allow cells to cease proliferation and escape apoptosis, but the mechanisms involved in this process are poorly understood. Cell cycle arrest in response to DNA damage requires downregulation of Myc via a p53-independent signaling pathway. Here we have used siRNA screening of the human kinome to identify MAPKAPK5 (MK5, PRAK) as a negative regulator of Myc expression. MK5 regulates translation of Myc, since it is required for expression of miR-34b and miR-34c that bind to the 3'UTR of MYC. MK5 activates miR-34b/c expression via phosphorylation of FoxO3a, thereby promoting nuclear localization of FoxO3a and enabling it to induce miR-34b/c expression and arrest proliferation. Expression of MK5 in turn is directly activated by Myc, forming a negative feedback loop. MK5 is downregulated in colon carcinomas, arguing that this feedback loop is disrupted during colorectal tumorigenesis.


Subject(s)
Colorectal Neoplasms/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Line, Tumor , Colorectal Neoplasms/enzymology , Down-Regulation , Feedback, Physiological , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , HCT116 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
Nucleic Acids Res ; 45(5): 2809-2828, 2017 03 17.
Article in English | MEDLINE | ID: mdl-27907888

ABSTRACT

Regulation of microRNA (miR) biogenesis is complex and stringently controlled. Here, we identify the kinase GSK3ß as an important modulator of miR biogenesis at Microprocessor level. Repression of GSK3ß activity reduces Drosha activity toward pri-miRs, leading to accumulation of unprocessed pri-miRs and reduction of pre-miRs and mature miRs without altering levels or cellular localisation of miR biogenesis proteins. Conversely, GSK3ß activation increases Drosha activity and mature miR accumulation. GSK3ß achieves this through promoting Drosha:cofactor and Drosha:pri-miR interactions: it binds to DGCR8 and p72 in the Microprocessor, an effect dependent upon presence of RNA. Indeed, GSK3ß itself can immunoprecipitate pri-miRs, suggesting possible RNA-binding capacity. Kinase assays identify the mechanism for GSK3ß-enhanced Drosha activity, which requires GSK3ß nuclear localisation, as phosphorylation of Drosha at S300 and/or S302; confirmed by enhanced Drosha activity and association with cofactors, and increased abundance of mature miRs in the presence of phospho-mimic Drosha. Functional implications of GSK3ß-enhanced miR biogenesis are illustrated by increased levels of GSK3ß-upregulated miR targets following GSK3ß inhibition. These data, the first to link GSK3ß with the miR cascade in humans, highlight a novel pro-biogenesis role for GSK3ß in increasing miR biogenesis as a component of the Microprocessor complex with wide-ranging functional consequences.

18.
Brain ; 140(6): 1768-1783, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28430857

ABSTRACT

See Mercado and Hetz (doi:10.1093/brain/awx107) for a scientific commentary on this article.Signalling through the PERK/eIF2α-P branch of the unfolded protein response plays a critical role in controlling protein synthesis rates in cells. This pathway is overactivated in brains of patients with Alzheimer’s disease and related disorders and has recently emerged as a promising therapeutic target for these currently untreatable conditions. Thus, in mouse models of neurodegenerative disease, prolonged overactivation of PERK/eIF2α-P signalling causes sustained attenuation of protein synthesis, leading to memory impairment and neuronal loss. Re-establishing translation rates by inhibition of eIF2α-P activity, genetically or pharmacologically, restores memory and prevents neurodegeneration and extends survival. However, the experimental compounds used preclinically are unsuitable for use in humans, due to associated toxicity or poor pharmacokinetic properties. To discover compounds that have anti-eIF2α-P activity suitable for clinical use, we performed phenotypic screens on a NINDS small molecule library of 1040 drugs. We identified two compounds, trazodone hydrochloride and dibenzoylmethane, which reversed eIF2α-P-mediated translational attenuation in vitro and in vivo. Both drugs were markedly neuroprotective in two mouse models of neurodegeneration, using clinically relevant doses over a prolonged period of time, without systemic toxicity. Thus, in prion-diseased mice, both trazodone and dibenzoylmethane treatment restored memory deficits, abrogated development of neurological signs, prevented neurodegeneration and significantly prolonged survival. In tauopathy-frontotemporal dementia mice, both drugs were neuroprotective, rescued memory deficits and reduced hippocampal atrophy. Further, trazodone reduced p-tau burden. These compounds therefore represent potential new disease-modifying treatments for dementia. Trazodone in particular, a licensed drug, should now be tested in clinical trials in patients.


Subject(s)
Chalcones/pharmacology , Frontotemporal Dementia/drug therapy , Memory Disorders/drug therapy , Neuroprotective Agents/pharmacology , Prion Diseases/drug therapy , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Trazodone/pharmacology , eIF-2 Kinase/antagonists & inhibitors , Animals , Behavior, Animal , Chalcones/administration & dosage , Disease Models, Animal , Frontotemporal Dementia/complications , Memory Disorders/etiology , Mice , Neuroprotective Agents/administration & dosage , Prion Diseases/complications , Protein Kinase Inhibitors/administration & dosage , Trazodone/administration & dosage , Unfolded Protein Response
19.
Nature ; 485(7399): 507-11, 2012 May 06.
Article in English | MEDLINE | ID: mdl-22622579

ABSTRACT

The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.


Subject(s)
Eukaryotic Initiation Factor-2/chemistry , Eukaryotic Initiation Factor-2/metabolism , Neurodegenerative Diseases/metabolism , Phosphoproteins/metabolism , Prions/metabolism , Protein Biosynthesis , Repressor Proteins/metabolism , Animals , Cell Death/drug effects , Cinnamates/pharmacology , Eukaryotic Initiation Factor-2/analysis , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/pathology , Kaplan-Meier Estimate , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents , Phosphoproteins/analysis , Phosphorylation , PrPSc Proteins/analysis , PrPSc Proteins/metabolism , PrPSc Proteins/toxicity , Prion Diseases/pathology , Prions/biosynthesis , Prions/genetics , Protein Biosynthesis/drug effects , Protein Folding/drug effects , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Repressor Proteins/analysis , Repressor Proteins/chemistry , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Synaptic Transmission/drug effects , Thiourea/analogs & derivatives , Thiourea/pharmacology , Unfolded Protein Response/physiology
20.
Mol Cell ; 40(2): 228-37, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20965418

ABSTRACT

A number of stresses, including nutrient stress, temperature shock, DNA damage, and hypoxia, can lead to changes in gene expression patterns caused by a general shutdown and reprogramming of protein synthesis. Each of these stress conditions results in selective recruitment of ribosomes to mRNAs whose protein products are required for responding to stress. This recruitment is regulated by elements within the 5' and 3' untranslated regions of mRNAs, including internal ribosome entry segments, upstream open reading frames, and microRNA target sites. These elements can act singly or in combination and are themselves regulated by trans-acting factors. Translational reprogramming can result in increased life span, and conversely, deregulation of these translation pathways is associated with disease including cancer and diabetes.


Subject(s)
Eukaryotic Cells/metabolism , Gene Expression Regulation , Protein Biosynthesis/genetics , Stress, Physiological/physiology , Animals , Humans , Models, Genetic , RNA, Messenger/genetics , Untranslated Regions/genetics
SELECTION OF CITATIONS
SEARCH DETAIL