Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters

Journal subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047405

ABSTRACT

This research addresses the development of a formalized approach to dental material selection (DMS) in manufacturing removable complete dentures (RDC). Three types of commercially available polymethyl methacrylate (PMMA) grades, processed by an identical Digital Light Processing (DLP) 3D printer, were compared. In this way, a combination of mechanical, tribological, technological, microbiological, and economic factors was assessed. The material indices were calculated to compare dental materials for a set of functional parameters related to feedstock cost. However, this did not solve the problem of simultaneous consideration of all the material indices, including their significance. The developed DMS procedure employs the extended VIKOR method, based on the analysis of interval quantitative estimations, which allowed the carrying out of a fully fledged analysis of alternatives. The proposed approach has the potential to enhance the efficiency of prosthetic treatment by optimizing the DMS procedure, taking into consideration the prosthesis design and its production route.


Subject(s)
Denture, Complete , Polymethyl Methacrylate , Prosthesis Design , Technology , Dental Materials , Computer-Aided Design
2.
Sensors (Basel) ; 22(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36015792

ABSTRACT

(1) Background: this study deals with design of an automated laboratory facility based on a servo-hydraulic testing machine for estimating parameters of mechanical hysteresis loops by means of the digital image correlation (DIC) method. (2) Methods: the paper presents a description of the testing facility, describes the grounds for calculating the elastic modulus, the offset yield strength (OYS) and the parameters of the mechanical hysteresis loops by the DIC method. (3) Results: the developed hardware-software facility was tested by studying the fatigue process in neat polyimide (PI) under various amplitude tension-tension loadings. It was found that the damage accumulation was accompanied by the decrease in the loop areas, while failure occurred when it reduced by at least ~5 kJ/m3. (4) Conclusions: it was shown that lowering the loop area along with changing the secant modulus value makes it possible to estimate the level of the scattered damage accumulation (mainly at the stresses above the OYS level). It was revealed that fractography data, namely the pattern and sizes of the fatigue crack initiation and propagation zones, did not correlate well with the dependences of the parameters of the hysteresis loops.

3.
Molecules ; 27(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36234914

ABSTRACT

High-strength PI and PEI polymers differ by chemical structure and flexibility of the polymer chains that ensure lower cost and higher manufacturability of the latter. The choice of a particular polymer matrix is of actuality at design of antifriction composites on their basis. In this study, a comparative analysis of tribological behavior of PI and PEI- based composites was carried out with linear contact rubbing. The neat materials, as well as the two- and three-component composites reinforced with chopped carbon fibers, were investigated. The third components were typically used, but were different in nature (polymeric and crystalline) being solid lubricant fillers (PTFE, graphite and MoS2) with characteristic dimensions of several microns. The variable parameters were both load and sliding speed, as well as the counterface material. It was shown that an improvement of the tribological properties could be achieved by the tribological layer formation, which protected their wear track surfaces from the cutting and plowing effects of asperities on the surfaces of the metal and ceramic counterparts. The tribological layers were not formed in both neat polymers, while disperse hardening by fractured CF was responsible for the tribological layer formation in both two- and three component PI- and PEI-based composites. The effect of polymer matrix in tribological behavior was mostly evident in two-component composites (PI/CF, PEI/CF) over the entire P⋅V product range, while extra loading with Gr and MoS2 leveled the regularities of tribological layer formation, as well as the time variation in friction coefficients.

4.
Polymers (Basel) ; 16(16)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39204494

ABSTRACT

The aim of this study was to investigate the tribological characteristics of commercially available high-strength polyphthalamide-based composites with great contents (30-50 wt.%) of both carbon and glass fibers in point and linear contacts against metal and ceramic counterfaces under dry friction and oil-lubricated conditions at various loads and sliding speeds. The lengths of both types of fibers were varied simultaneously with their contents while samples were fabricated from granules by injection molding. When loading PPA with 30 wt.% SCFs at an aspect ratio (AR) of 200, the ultimate tensile strength and the elastic modulus increased up to 142.7 ± 12.5 MPa and 12.9 ± 0.6 GPa, respectively. In the composites with the higher contents of reinforcing fibers PPA/40CCF and AR~1000, the ultimate tensile strength and the elastic modulus were 240 ± 3 MPa and 33.7 ± 1.9 GPa, respectively. Under the applied test conditions, a composite reinforced with 40 wt.% carbon fibers up to 100 µm long at an aspect ratio of ~1000 possessed the best both mechanical properties and tribological characteristics. One of the reasons that should be considered for improving the tribological characteristics of the composite is the fatigue wear mechanism, which is facilitated by the high filling degree, the strong interfacial adhesion, and the great aspect ratio for fibers. Under the oil-lubricated conditions, both friction coefficients and wear rates decreased, so such friction units could be implemented whenever possible. The reported data can be used as practical recommendations for applying fibrous polyphthalamide-based composites as friction unit components.

5.
Polymers (Basel) ; 16(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125206

ABSTRACT

In this paper, the tribological characteristics of polyethersulfone-based composites reinforced with short carbon fibers (SCFs) at aspect ratios of 14-250 and contents of 10-30 wt.% are reported for linear metal-polymer and ceramic-polymer tribological contacts. The results showed that the wear resistance could be greatly improved through tribological layer formation. Loading PES with 30 wt.% SCFs (2 mm) provided a minimum WR value of 0.77 × 10-6 mm3/N m. The tribological layer thicknesses were estimated to be equal to 2-7 µm. Several conditions were proposed, which contributed to the formation of a tribological layer from debris, including the three-stage pattern of the changing kinetics of the time dependence of the friction coefficient. The kinetics had to sharply increase up to ~0.4-0.5 in the first (running-in) stage and gradually decrease down to ~0.1-0.2 in the second stage. Then, if these levels did not change, it could be argued that any tribological layer had formed, become fixed and fulfilled its functional role. The PES-based composites loaded with SCFs 2 mm long were characterized by possessing the minimum CoF levels, for which their three-stage changing pattern corresponded to one of the conditions for tribological layer formation. This work provides valuable insight for studying the process parameters of tribological layer formation for SCF-reinforced thermoplastic PES composites and revealing their impact on tribological properties.

6.
Polymers (Basel) ; 16(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38399829

ABSTRACT

The aim of this study was to optimize the ultrasonic consolidation (USC) parameters for 'PEI adherend/Prepreg (CF-PEI fabric)/PEI adherend' lap joints. For this purpose, artificial neural network (ANN) simulation was carried out. Two ANNs were trained using an ultra-small data sample, which did not provide acceptable predictive accuracy for the applied simulation methods. To solve this issue, it was proposed to artificially increase the learning sample by including additional data synthesized according to the knowledge and experience of experts. As a result, a relationship between the USC parameters and the functional characteristics of the lap joints was determined. The results of ANN simulation were successfully verified; the developed USC procedures were able to form a laminate with an even regular structure characterized by a minimum number of discontinuities and minimal damage to the consolidated components.

7.
Polymers (Basel) ; 16(18)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39339072

ABSTRACT

The aim of this study was to optimize a set of technological parameters (travel speed, extruder temperature, and extrusion rate) for 3D printing with a PEEK-based composite reinforced with 30 wt.% glass fibers (GFs). For this purpose, both Taguchi and finite element methods (FEM) were utilized. The artificial neural networks (ANNs) were implemented for computer simulation of full-scale experiments. Computed tomography of the additively manufactured (AM) samples showed that the optimal 3D printing parameters were the extruder temperature of 460 °C, the travel speed of 20 mm/min, and the extrusion rate of 4 rpm (the microextruder screw rotation speed). These values correlated well with those obtained by computer simulation using the ANNs. In such cases, the homogeneous micro- and macro-structures were formed with minimal sample distortions and porosity levels within 10 vol.% of both structures. The most likely reason for porosity was the expansion of the molten polymer when it had been squeezed out from the microextruder nozzle. It was concluded that the mechanical properties of such samples can be improved both by changing the 3D printing strategy to ensure the preferential orientation of GFs along the building direction and by reducing porosity via post-printing treatment or ultrasonic compaction.

8.
Polymers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904475

ABSTRACT

Since the inelastic strain development plays an important role in the low-cycle fatigue (LCF) of High-Performance Polymers (HPPs), the goal of the research was to study the effect of an amorphous polymer matrix type on the resistance to cyclic loading for both polyimide (PI)- and polyetherimide (PEI)-based composites, identically loaded with short carbon fibers (SCFs) of various lengths, in the LCF mode. The fracture of the PI and PEI, as well as their particulate composites loaded with SCFs at an aspect ratio (AR) of 10, occurred with a significant role played by cyclic creep processes. Unlike PEI, PI was less prone to the development of creep processes, probably because of the greater rigidity of the polymer molecules. This increased the stage duration of the accumulation of scattered damage in the PI-based composites loaded with SCFs at AR = 20 and AR = 200, causing their greater cyclic durability. In the case of SCFs 2000 µm long, the length of the SCFs was comparable to the specimen thickness, causing the formation of a spatial framework of unattached SCFs at AR = 200. The higher rigidity of the PI polymer matrix provided more effective resistance to the accumulation of scattered damage with the simultaneously higher fatigue creep resistance. Under such conditions, the adhesion factor exerted a lesser effect. As shown, the fatigue life of the composites was determined both by the chemical structure of the polymer matrix and the offset yield stresses. The essential role of the cyclic damage accumulation in both neat PI and PEI, as well as their composites reinforced with SCFs, was confirmed by the results of XRD spectra analysis. The research holds the potential to solve problems related to the fatigue life monitoring of particulate polymer composites.

9.
Materials (Basel) ; 16(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903230

ABSTRACT

The optimal mode for ultrasonic welding (USW) of the "PEEK-ED (PEEK)-prepreg (PEI impregnated CF fabric)-ED (PEEK)-PEEK" lap joint was determined by artificial neural network (ANN) simulation, based on the sample of the experimental data expanded with the expert data set. The experimental verification of the simulation results showed that mode 10 (t = 900 ms, P = 1.7 atm, τ = 2000 ms) ensured the high strength properties and preservation of the structural integrity of the carbon fiber fabric (CFF). Additionally, it showed that the "PEEK-CFF prepreg-PEEK" USW lap joint could be fabricated by the "multi-spot" USW method with the optimal mode 10, which can resist the load per cycle of 50 MPa (the bottom HCF level). The USW mode, determined by ANN simulation for the neat PEEK adherends, did not provide joining both particulate and laminated composite adherends with the CFF prepreg reinforcement. The USW lap joints could be formed when the USW durations (t) were significantly increased up to 1200 and 1600 ms, respectively. In this case, the elastic energy is transferred more efficiently to the welding zone through the upper adherend.

10.
Polymers (Basel) ; 15(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37571160

ABSTRACT

This paper addresses peculiarities in the formation and adherence of a tribofilm on the wear track surface of antifriction PI- and PEI-based composites, as well as a transfer film (TF) on a steel counterface. It is shown that during hot pressing, PTFE nanoparticles melted and coalesced into micron-sized porous inclusions. In the PEI matrix, their dimensions were much larger (up to 30 µm) compared to those in the PI matrix (up to 6 µm). The phenomenon eliminated their role as effective uniformly distributed nanofillers, and the content of 5 wt.% was not always sufficient for the formation of a tribofilm or a significant decrease in the WR values. At the loaded content, the role of MoS2 and graphite (Gr) microparticles was similar, although filling with MoS2 microparticles more successfully solved the problem of adhering to a PTFE-containing tribofilm in the point tribological contact. This differed under the linear tribological contact. The higher roughness of the steel counterpart, as well as the larger area of its sliding surface with the same PTFE content in the three-component PI- and PEI-based composites, did not allow for a strong adherence of either the stable PTFE-containing tribofilm on the wear track surface or the TF on the steel counterpart. For the PEI-based composites, the inability to shield the steel counterpart from the more reactive polymer matrix, especially under the conditions of PTFE deficiency, was accompanied by multiple increases in the WR values, which were several times greater than that of neat PEI.

11.
Polymers (Basel) ; 14(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35267795

ABSTRACT

The purpose of this review is to summarize data on the structure, mechanical and tribological properties, and wear patterns of composites based on high-performance polymers (HPPs) intended for use in friction units. The review includes three key sections, divided according to the tribological contact schemes regardless of the polymer matrix. In the second part, the analysis of composites is carried out in point contacts. The third section is devoted to the results of studies of HPP-based composites in linear ones. The fourth section summarizes information on flat contacts. Particular attention is paid to the formation of transfer films (TFs) in the contacts and their influence on the tribological patterns of the studied rubbing materials. As a conclusion, it is noted that the challenge of experimental methods for analyzing TFs, stated by K. Friedrich, is effectively solved in recent studies by the XPS method, which enables us to accurately determine their composition. Although this determination is completed after the tribological tests, it allows not only a more accurate interpretation of their results considering specific conditions and loading schemes, but also the ability to design HPP-based composites that form required TFs performing their preset functions.

12.
Materials (Basel) ; 15(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35806781

ABSTRACT

The fatigue properties of neat polyimide and the "polyimide + 10 wt.% milled carbon fibers + 10 wt.% polytetrafluoroethylene" composite were investigated under various cyclic loading conditions. In contrast to most of the reported studies, constructing of hysteresis loops was performed through the strain assessment using the non-contact 2D Digital Image Correlation method. The accumulation of cyclic damage was analyzed by calculating parameters of mechanical hysteresis loops. They were: (i) the energy losses (hysteresis loop area), (ii) the dynamic modulus (proportional to the compliance/stiffness of the material) and (iii) the damping capacity (calculated through the dissipated and total mechanical energies). On average, the reduction in energy losses reached 10-18% at the onset of fracture, whereas the modulus variation did not exceed 2.5% of the nominal value. The energy losses decreased from 20 down to 18 J/m3 (10%) for the composite, whereas they reduced from 30 down to 25 J/m3 (17%) for neat PI in the low-cycle fatigue mode. For high-cycle fatigue, energy losses decreased from 10 to 9 J/m3 (10%) and from 17 to 14 J/m3 (18%) for neat PI and composite, respectively. For this reason, the changes of the energy losses due to hysteresis are of prospects for the characterization of both neat PI and the reinforced PI-based composites.

13.
Polymers (Basel) ; 14(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35335546

ABSTRACT

The structure, mechanical and tribological properties of the PEI- and PI-based composites reinforced with Chopped Carbon Fibers (CCF) and loaded with commercially available micron-sized solid lubricant fillers of various nature (polymeric-PTFE, and crystalline-Gr and MoS2) were studied in the temperature range of 23-180 (240) °C. It was shown that tribological properties of these ternary composites were determined by the regularities of the transfer film (TF) adherence on their wear track surfaces. The patterns of TFs formation depended on the chemical structure of the polymer matrix (stiffness/flexibility) as well as the tribological test temperatures. Loading with PTFE solid lubricant particles, along with the strengthening effect of CCF, facilitated the formation and fixation of the TF on the sliding surfaces of the more compliant PEI-based composite at room temperature. In this case, a very low coefficient of friction (CoF) value of about 0.05 was observed. For the more rigid identically filled PI-based composite, the CoF value was twice as high under the same conditions. At elevated temperatures, rising both CoF levels and oscillation of their values made it difficult to retain the non-polar PTFE transfer film on the sliding surfaces of the PI-based composite. As a result, friction of the ceramic counterpart proceeded over the composite surface without any protecting TF at T ≥ 180 °C. For the sample with the more flexible PEI matrix, the PTFE-containing TF was retained on its sliding surface, providing a low WR level even under CoF rising and oscillating conditions. A similar analysis was carried out for the less efficient crystalline solid lubricant filler MoS2.

14.
Materials (Basel) ; 14(5)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673543

ABSTRACT

The mechanical and tribological properties of polyetheretherketone (PEEK)- and PEEK + PTFE (polytetrafluoroethylene)-based composites loaded with and four types of nanoparticles (carbonaceous, metallic, bimetal oxide, and ceramic) under metal- and ceramic-polymer tribological contact conditions were investigated. It was found that loading with the nanofillers in a small content (0.3 wt.%) enabled improvement of the elastic modulus of the PEEK-based composites by 10-15%. In the metal-polymer tribological contact, wear resistance of all nanocomposites was increased by 1.5-2.3 times. In the ceramic-polymer tribological contact, loading PEEK with metal nanoparticles caused the intensification of oxidation processes, the microabrasive counterpart wear, and a multiple increase in the wear rate of the composites. The three component "PEEK/10PTFE/0.3 nanofillers" composites provided an increase in wear resistance, up to 22 times, for the metal-polymer tribological contact and up to 12 times for the ceramic-polymer one (with a slight decrease in the mechanical properties) compared to that of neat PEEK. In all cases, this was achieved by the polymer transfer film formation and adherence on the counterparts. The various effects of the four types of nanoparticles on wear resistance were determined by their ability to fix the PTFE-containing transfer film on the counterpart surfaces.

15.
Materials (Basel) ; 14(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808909

ABSTRACT

The aim of the paper was to improve the functional properties of composites based on ultra-high molecular weight polyethylene (UHMWPE) by loading with reinforcing fibers. It was achieved by designing the optimal composition for its subsequent use as a feedstock for 3D-printing of guides for roller and plate chains, conveyors, etc. As a result, it was experimentally determined that loading UHMWPE with 17% high density polyethylene grafted with VinylTriMethoxySilane (HDPE-g-VTMS) was able to bind 5% glass fillers of different aspect ratios, thereby determining the optimal mechanical and tribological properties of the composites. Further increasing the content of the glass fillers caused a deterioration in their tribological properties due to insufficient adhesion of the extrudable matrix due to the excessive filler loading. A multi-level approach was implemented to design the high-strength anti-friction 'UHMWPE+17%HDPE-g-VTMS+12%PP'-based composites using computer-aided algorithms. This resulted in the determination of the main parameters that provided their predefined mechanical and tribological properties and enabled the assessment of the possible load-speed conditions for their operation in friction units. The uniform distribution of the fillers in the matrix, the pattern of the formed supermolecular structure and, as a consequence, the mechanical and tribological properties of the composites were achieved by optimizing the values of the main control parameters (the number of processing passes in the extruder and the aspect ratio of the glass fillers).

16.
Polymers (Basel) ; 13(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34451375

ABSTRACT

The structure, mechanical and tribological properties of the polyimide-based composites reinforced with chopped carbon fibers (CCF) and loaded with solid-lubricant commercially available fillers of various natures were investigated. The metal- and ceramic counterparts were employed for tribological testing. Micron sized powders of PTFE, colloidal graphite and molybdenum disulfide were used for solid lubrication. It was shown that elastic modulus was enhanced by up to 2.5 times, while ultimate tensile strength was increased by up 1.5 times. The scheme and tribological loading conditions exerted the great effect on wear resistance of the composites. In the tribological tests by the 'pin-on-disk' scheme, wear rate decreased down to ~290 times for the metal-polymer tribological contact and to ~285 times for the ceramic-polymer one (compared to those for neat PI). In the tribological tests against the rougher counterpart (Ra~0.2 µm, the 'block-on-ring' scheme) three-component composites with both graphite and MoS2 exhibited high wear resistance. Under the "block-on-ring" scheme, the possibility of the transfer film formation was minimized, since the large-area counterpart slid against the 'non-renewable' surface of the polymer composite (at a 'shortage' of solid lubricant particles). On the other hand, graphite and MoS2 particles served as reinforcing inclusions. Finally, numerical simulation of the tribological test according to the 'block-on-ring' scheme was carried out. Within the framework of the implemented model, the counterpart roughness level exerted the significantly greater effect on wear rate in contrast to the porosity.

17.
Materials (Basel) ; 13(12)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549255

ABSTRACT

It is believed that the structure and properties of parts fabricated by additive (i.e., non-stationary) manufacturing are slightly worse compared to hot pressing. To further proceed with improving the quality of Fused Deposition Modeling 3D-printed parts, the 'UHMWPE + 17 wt.% HDPE-g-SMA + 12 wt.% PP' composite feedstock fabrication parameters, by the twin-screw extruder compounding and 3D printing (the Fused Deposition Modeling (FDM) process), were optimized using the Taguchi method. The optimization was carried out over the results of mechanical tests. The obtained results were interpreted in terms of (1) the uniformity of mixing of the polymer components upon compounding and (2) the homogeneity of the structure formed by the 3D printing. The values of the main factors (the processing parameters) were determined using the Taguchi method. Their application made it possible to improve the physical, mechanical, and tribological properties of the samples manufactured by the FDM method at the level of neat UHMWPE as well as the UHMWPE-based composites fabricated by compression sintering. A comparative analysis of the structure, as well as the mechanical and tribological properties of the composite obtained by the FDM method, and the hot pressing from 'optimized' feedstock was performed. The 'UHMWPE + 17 wt.% HDPE-g-SMA + 12 wt.% PP' composites fabricated by the optimal compounding and 3D printing parameters can be implemented for the additive manufacturing of complex shape products (including medical implants, transport, mining, and processing industries; in particular, in the Far North).

18.
Materials (Basel) ; 13(2)2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31940803

ABSTRACT

The aim of the study was to develop a design methodology for the UltraHigh Molecular Weight Polyethylene (UHMWPE)-based composites used in friction units. To achieve this, stress-strain analysis was done using computer simulation of the triboloading processes. In addition, the effects of carbon fiber size used as reinforcing fillers on formation of the subsurface layer structures at the tribological contacts as well as composite wear resistance were evaluated. A structural analysis of the friction surfaces and the subsurface layers of UHMWPE as well as the UHMWPE-based composites loaded with the carbon fibers of various (nano-, micro-, millimeter) sizes in a wide range of tribological loading conditions was performed. It was shown that, under the "moderate" tribological loading conditions (60 N, 0.3 m/s), the carbon nanofibers (with a loading degree up to 0.5 wt.%) were the most efficient filler. The latter acted as a solid lubricant. As a result, wear resistance increased by 2.7 times. Under the "heavy" test conditions (140 N, 0.5 m/s), the chopped carbon fibers with a length of 2 mm and the optimal loading degree of 10 wt.% were more efficient. The mechanism is underlined by perceiving the action of compressive and shear loads from the counterpart and protecting the tribological contact surface from intense wear. In doing so, wear resistance had doubled, and other mechanical properties had also improved. It was found that simultaneous loading of UHMWPE with Carbon Nano Fibers (CNF) as a solid lubricant and Long Carbon Fibers (LCF) as reinforcing carbon fibers, provided the prescribed mechanical and tribological properties in the entire investigated range of the "load-sliding speed" conditions of tribological loading.

19.
Materials (Basel) ; 13(7)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244609

ABSTRACT

The aim of this study was to assess the effect of adhesion between the non-polar, ultra-high molecular weight polyethylene (UHMWPE) matrix and the glass fiber fillers of various lengths treated with the commercially available "KH-550" agent, on the mechanical and tribological properties of the UHMWPE-based composites. The motivation was to find the optimal compositions of the polymer composite, for the compression sintering manufacturing of lining plates for the protection of marine venders and construction vehicles, as well as transport equipment. It was shown that the initial powder size at equal molecular weight determined the distribution patterns of the glass fibers in the matrix, and, as a consequence, the mechanical and tribological properties of the composites. Based on the obtained experimental data and the results of the calculation by a developed computer algorithm, control parameters were determined to give practical recommendations (polymer powder size and glass fiber length), for the production of the UHMWPE-composites having specified mechanical and tribological characteristics. The "GUR4022 + 10% LGF" composite, loaded with the chopped 3 mm glass fibers treated with the "KH-550", was recommended for severe operating conditions (high loads, including impact and abrasive wear). For mild operating conditions (including cases when the silane coupling agent could not be used), the "GUR2122 + 10% MGF" and "GUR2122 + 10% LGF" composites, based on the fine UHMWPE powder, were recommended. However, the cost and technological efficiency of the filler (flowability, dispersibility) and polymer powder processing should be taken into account, in addition to the specified mechanical and tribological properties.

SELECTION OF CITATIONS
SEARCH DETAIL