Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Gastroenterol ; 22(1): 197, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35448971

ABSTRACT

BACKGROUND: Intestinal metaplasia (IM) is considered a key pivot point in the Correa model of gastric cancer (GC). It is histologically subtyped into the complete and incomplete subtypes, the latter being associated with a greater risk of progression. However, the clinical utility of IM subtyping remains unclear, partially due to the absence of reliable defining biomarkers. METHODS: Based on gene expression data and existing literature, we selected CD10 and Das1 as candidate biomarkers to distinguish complete and incomplete IM glands in tissues from patients without GC (IM-GC) and patients with GC (IM + GC). Immunohistochemical staining of individually subtyped IM glands was scored after blinding by two researchers using tissue belonging to both IM-GC and IM + GC patients. Whole tissue Das1 staining was further assessed using digital image quantification (cellSens Dimension, Olympus). RESULTS: Across both cohorts CD10 stained the IM brush border and was shown to have a high sensitivity (87.5% and 94.9% in IM-GC and IM + GC patients respectively) and specificity (100.0% and 96.7% respectively) with an overall AUROC of 0.944 for complete IM glands. By contrast Das1 stained mainly goblet cells and the apical membrane of epithelial cells, mostly of incomplete IM glands with a low sensitivity (28.6% and 29.3% in IM-GC and IM + GC patients respectively) but high specificity (98.3% and 85.1% respectively) and an overall AUROC of 0.603 for incomplete IM glands. A combined logistic regression model showed a significant increase in AUROC for detecting complete IM glands (0.955 vs 0.970). Whole tissue digital quantification of Das1 staining showed a significant association with incomplete IM compared to complete IM, both in IM-GC and in IM + GC patients (p = 0.016 and p = 0.009 respectively, Mann-Whitney test and unpaired t test used). Additionally, complete IM in IM + GC patients exhibited significantly more Das1 staining than in IM-GC patients (p = 0.019, Mann-Whitney test). CONCLUSIONS: These findings suggest that CD10 is an outstanding biomarker for complete IM and Das1 may be useful as a secondary biomarker for IM glands at greater risk of progression irrespective of IM subtype. Overall, the clinical use of these biomarkers could lead to improved patient stratification and targeted surveillance.


Subject(s)
Precancerous Conditions , Stomach Neoplasms , Biomarkers , Gastric Mucosa/pathology , Humans , Immunohistochemistry , Metaplasia/pathology , Precancerous Conditions/pathology , Stomach Neoplasms/pathology
2.
Gastric Cancer ; 24(3): 589-601, 2021 May.
Article in English | MEDLINE | ID: mdl-33277667

ABSTRACT

OBJECTIVE: Gastric cancer patients generally have a poor outcome, particularly those with advanced-stage disease which is defined by the increased invasion of cancer locally and is associated with higher metastatic potential. This study aimed to identify genes that were functional in the most fundamental hallmark of cancer, namely invasion. We then wanted to assess their value as biomarkers of gastric cancer progression and recurrence. DESIGN: Data from a cohort of patients profiled on cDNA expression arrays was interrogated using K-means analysis. This genomic approach classified the data based on patterns of gene expression allowing the identification of the genes most correlated with the invasion of GC. We evaluated the functional role of a key protein from this analysis in invasion and as a biomarker of recurrence after curative resection. RESULTS: Expression of secreted frizzled-related protein 4 (SFRP4) was identified as directly proportional to gastric cancer invasion. This finding was validated in multiple, independent datasets and its functional role in invasion was also confirmed using invasion assays. A change in serum levels of SFRP4 after curative resection, when coupled with AJCC stage, can accurately predict the risk of disease recurrence after curative therapy in an assay we termed PredictR. CONCLUSIONS: This simple ELISA-based assay can help predict recurrence of disease after curative gastric cancer surgery irrespective of adjuvant therapy. The results require further evaluation in a prospective trial but would help in the rational prescription of cancer therapies and surveillance to prevent under or over treatment of patients after curative resection.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasm Recurrence, Local/surgery , Proto-Oncogene Proteins/metabolism , Stomach Neoplasms/surgery , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Predictive Value of Tests , Stomach Neoplasms/pathology
3.
Am J Hum Genet ; 98(5): 830-842, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27087319

ABSTRACT

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.


Subject(s)
Adenocarcinoma/genetics , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli/genetics , Adenomatous Polyps/genetics , Exons/genetics , Point Mutation/genetics , Stomach Neoplasms/genetics , Allelic Imbalance/genetics , DNA Copy Number Variations/genetics , Exome/genetics , Female , Gastric Mucosa/metabolism , Genetic Linkage/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Loss of Heterozygosity , Male , Pedigree , Promoter Regions, Genetic/genetics
4.
Cancers (Basel) ; 15(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37568729

ABSTRACT

GIM is a persistent, premalignant lesion whereby gastric mucosa is replaced by metaplastic mucosa resembling intestinal tissue, arising in the setting of chronic inflammation, particularly in the context of Helicobacter pylori. While the overall rates of progression to gastric adenocarcinoma are low, estimated at from 0.25 to 2.5%, there are features that confer a much higher risk and warrant follow-up. In this review, we collate and summarise the current knowledge regarding the pathogenesis of GIM, and the clinical, endoscopic and histologic risk factors for cancer. We examine the current state-of-practice with regard to the diagnosis and management of GIM, which varies widely in the published guidelines and in practice. We consider the emerging evidence in population studies, artificial intelligence and molecular markers, which will guide future models of care. The ultimate goal is to increase the detection of early gastric dysplasia/neoplasia that can be cured while avoiding unnecessary surveillance in very low-risk individuals.

5.
Nature ; 441(7096): 1011-4, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16791200

ABSTRACT

The accumulation of somatic DNA damage has been implicated as a cause of ageing in metazoa. One possible mechanism by which increased DNA damage could lead to cellular degeneration and death is by stochastic deregulation of gene expression. Here we directly test for increased transcriptional noise in aged tissue by dissociating single cardiomyocytes from fresh heart samples of both young and old mice, followed by global mRNA amplification and quantification of mRNA levels in a panel of housekeeping and heart-specific genes. Although gene expression levels already varied among cardiomyocytes from young heart, this heterogeneity was significantly elevated at old age. We had demonstrated previously an increased load of genome rearrangements and other mutations in the heart of aged mice. To confirm that increased stochasticity of gene expression could be a result of increased genome damage, we treated mouse embryonic fibroblasts in culture with hydrogen peroxide. Such treatment resulted in a significant increase in cell-to-cell variation in gene expression, which was found to parallel the induction and persistence of genome rearrangement mutations at a lacZ reporter locus. These results underscore the stochastic nature of the ageing process, and could provide a mechanism for age-related cellular degeneration and death in tissues of multicellular organisms.


Subject(s)
Aging/genetics , Gene Expression , Myocardium/metabolism , Aging/physiology , Animals , Heart/physiology , Hydrogen Peroxide , Male , Mice , Mice, Inbred C57BL , Myocardium/cytology , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
6.
Cancers (Basel) ; 13(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34884995

ABSTRACT

Metastasis is considered one of the hallmarks of cancer and enhanced tumor invasion and metastasis is significantly associated with cancer mortality. Metastasis occurs via a series of integrated processes involving tumor cells and the tumor microenvironment. The innate immune components of the microenvironment have been shown to engage with tumor cells and not only regulate their proliferation and survival, but also modulate the surrounding environment to enable cancer progression. In the era of immune therapies, it is critical to understand how different innate immune cell populations are involved in this process. This review summarizes recent literature describing the roles of innate immune cells during the tumor metastatic cascade.

7.
Ther Adv Med Oncol ; 12: 1758835920930359, 2020.
Article in English | MEDLINE | ID: mdl-32754227

ABSTRACT

BACKGROUND: The association between the survival or efficacy of chemotherapy and the Lauren subtype of gastric cancer (GC) remains unclear. We aimed to clarify whether patients with different Lauren subtypes have different survival after treatment with systemic chemotherapy: intestinal gastric cancer (IGC) patients survived better than patients with mixed type gastric cancer (MGC) or diffuse gastric cancer (DGC) after treatment with systemic chemotherapy. PATIENTS & METHODS: Relevant studies for the meta-analysis were identified through searching Pubmed, Embase, Cochrane and Ovid up to March 2020. We also included our own prospectively collected cohort of patients that were followed over a 10-year period. Sub-group and sensitivity analyses were also performed. RESULTS: In our prospective cohort, the overall survival (OS) of IGC patients receiving systemic chemotherapy (chemoIGC) [median OS 5.01 years, interquartile range (IQR) 2.63-6.71] was significantly higher than that of DGC patients receiving the same chemotherapy (chemoDGC) (median OS 1.33 years, IQR 0.78-3.33, p = 0.0001). After adjusting for age, gender and cancer stage, there was a significant difference in OS in patients treated with chemotherapy based on the Lauren classification of GC {hazard ratio (HR) for OS of the IGC versus DGC 0.33, [95% confidence interval (CI), 0.17-0.65; p < 0.001]}. In the IGC patients, the adjusted HR associated with chemotherapy was 0.26 (95% CI, 0.12-0.56; p = 0.001), whereas the association was 0.64 (95% CI, 0.30-1.33; p = 0.23) in the DGC patient group.In our meta-analysis, 33 studies comprising 10,246 patients treated with systemic chemotherapy (chemoIGC n = 4888, chemoDGC n = 5358) met all the selection criteria. While we accounted for much of the heterogeneity in these studies, we found that chemoIGC patients showed significantly improved OS [HR, 0.76 (95% CI, 0.71-0.82); p < 0.00001] when compared with similarly treated chemoDGC patients. CONCLUSION: Our results support the consideration of Lauren subtype when prescribing systemic chemotherapy for GC, particularly for MGC or DGC, which may not benefit from chemotherapy. Lauren classification should be considered to stratify chemotherapy regimens to GC patients in future clinical trials, with particular relevance to MGC or DGC, which is more difficult to treat with current regimens.

8.
Clin Transl Immunology ; 9(5): e1127, 2020 May.
Article in English | MEDLINE | ID: mdl-32377339

ABSTRACT

OBJECTIVES: To facilitate disease prognosis and improve precise immunotherapy of gastric cancer (GC) patients, a comprehensive study integrating immune cellular and molecular analyses on tumor tissues and peripheral blood was performed. METHODS: The association of GC patients' outcomes and the immune context of their tumors was explored using multiplex immunohistochemistry (mIHC) and transcriptome profiling. Potential immune dysfunction mechanism/s in the tumors on the systemic level was further examined using mass cytometry (CyTOF) in complementary peripheral blood from selected patients. GC cohorts with mIHC and gene expression profiling data were also used as validation cohorts. RESULTS: Increased CD4+FOXP3+ T-cell density in the GC tumor correlated with prolonged survival. Interestingly, CD4+FOXP3+ T cells had a close interaction with CD8+ T cells rather than tumor cells. High densities of CD4+FOXP3+ T cells and CD8+ T cells (High-High) independently predicted prolonged patient survival. Furthermore, the interferon-gamma (IFN-γ) gene signature and PDL1 expression were up-regulated in this group. Importantly, a subgroup of genomically stable (GS) tumors and tumors with chromosomal instability (CIN) within this High-High group also had excellent survival. The High-High GS/CIN tumors were coupled with increased frequencies of Tbet+CD4+ T cells and central memory CD4+ T cells in the peripheral blood. CONCLUSION: These novel findings identify the combination of CD8+ T cells and FOXP3+CD4+ T cells as a significant prognostic marker for GC patients, which also could potentially be targeted and applied in the combination therapy with immune checkpoint blockades in precision medicine.

9.
J Gastroenterol Hepatol ; 24(2): 193-201, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19215332

ABSTRACT

Despite a plateau in incidence, gastric cancer remains a significant problem globally. The majority of gastric cancer is associated with histologically recognizable premalignant stages as first described by Pelayo Correa in the mid-1970s. The mortality from gastric cancer remains high especially in Western countries where, arguably, the index of suspicion of gastric cancer in patients presenting with upper abdominal symptoms is lower than in high prevalence countries. What is the evidence that intestinal metaplasia (IM) is a premalignant condition? What should the clinician know about IM and the relative risks of progression to gastric cancer? Finally, what are the current and future strategies that may help stratify patients into high risk and low risk for the development of gastric cancer? This review focuses on gastric IM and outlines some of the literature that discusses it as a premalignant condition. It also reviews the issue of surveillance of patients with IM in order to attempt to reduce the significant mortality of gastric cancer by detection of earlier stages of disease which are eminently treatable.


Subject(s)
Cell Transformation, Neoplastic/pathology , Precancerous Conditions/pathology , Stomach Neoplasms/pathology , Stomach/pathology , Animals , Cell Transformation, Neoplastic/genetics , Disease Progression , Early Detection of Cancer , Gene Expression Regulation, Neoplastic , Helicobacter pylori/isolation & purification , Humans , Metaplasia , Neoplastic Stem Cells/pathology , Precancerous Conditions/genetics , Precancerous Conditions/microbiology , Precancerous Conditions/therapy , Prognosis , Risk Assessment , Risk Factors , Stomach/microbiology , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/prevention & control
10.
Nat Commun ; 10(1): 3928, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477692

ABSTRACT

Tumor-associated macrophages (TAMs), one of the most abundant immune components in gastric cancer (GC), are difficult to characterize due to their heterogeneity. Multiple approaches have been used to elucidate the issue, however, due to the tissue-destructive nature of most of these methods, the spatial distribution of TAMs in situ remains unclear. Here we probe the relationship between tumor context and TAM heterogeneity by multiplex immunohistochemistry of 56 human GC cases. Using distinct expression marker profiles on TAMs, we report seven predominant populations distributed between tumor and non-tumor tissue. TAM population-associated gene signatures reflect their heterogeneity and polarization in situ. Increased density of CD163+ (CD206-) TAMs with concurrent high CD68 expression is associated with upregulated immune-signaling and improved patient survival by univariate, but not multivariate analysis. CD68-only and CD206+ TAMs are correlated with high PDL1 expression.


Subject(s)
Immunohistochemistry/methods , Macrophages/metabolism , Stomach Neoplasms/metabolism , Tumor Microenvironment , Adult , Aged , Aged, 80 and over , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
11.
Mech Ageing Dev ; 129(9): 528-33, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18565572

ABSTRACT

Genetic instability has been implicated as a causal factor in cancer and aging. Caloric restriction (CR) and suppression of the somatotroph axis significantly increase life span in the mouse and reduce multiple symptoms of aging, including cancer. To test if in vivo spontaneous mutation frequency is reduced by such mechanisms, we crossed long-lived Ames dwarf mice with a C57BL/6J line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from tissues and organs into Escherichia coli to measure mutant frequencies. Four cohorts were studied: (1) ad lib wild-type; (2) CR wild-type; (3) ad lib dwarf; and (4) CR dwarf. While both CR wild-type and ad lib dwarf mice lived significantly longer than the ad lib wild-type mice, under CR conditions dwarf mice did not live any longer than ad lib wild-type mice. While this may be due to an as yet unknown adverse effect of the C57BL/6J background, it did not prevent an effect on spontaneous mutation frequencies at the lacZ locus, which were assessed in liver, kidney and small intestine of 7- and 15-month-old mice of all four cohorts. A lower mutant frequency in the ad lib dwarf background was observed in liver and kidney at 7 and 15 months of age and in small intestine at 15 months of age as compared to the ad lib wild-type. CR also significantly reduced spontaneous mutant frequency in kidney and small intestine, but not in liver. In a separate cohort of lacZ-C57BL/6J mice CR was also found to significantly reduce spontaneous mutant frequency in liver and small intestine, across three age levels. These results indicate that two major pro-longevity interventions in the mouse are associated with a reduced mutation frequency. This could be responsible, at least in part, for the enhanced longevity associated with Ames dwarfism and CR.


Subject(s)
Caloric Restriction , DNA/genetics , Dwarfism, Pituitary/genetics , Animals , DNA/metabolism , DNA Mutational Analysis , Genomic Instability/genetics , Intestine, Small/metabolism , Kidney/metabolism , Liver/metabolism , Longevity/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Specificity/genetics
12.
Cancer Res ; 66(15): 7460-5, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16885342

ABSTRACT

This study uses a base excision repair (BER)-deficient model, the DNA polymerase beta heterozygous mouse, to investigate the effect of BER deficiency on tumorigenicity and aging. Aged beta-pol(+/-) mice express 50% less beta-pol transcripts and protein (P < 0.05) than aged beta-pol(+/+) mice, showing maintenance of the heterozygous state over the life span of the mouse. This reduction in beta-pol expression was not associated with an increase in mutation rate but was associated with a 100% increase in the onset of hypoploidy. Aged beta-pol(+/-) mice exhibited a 6.7-fold increase in developing lymphoma (P < 0.01). Accordingly, 38% of beta-pol(+/-) mice exhibited lymphoid hyperplasia, whereas none of the beta-pol(+/+) exhibited this phenotype. beta-pol(+/-) mice were also more likely to develop adenocarcinoma (2.7-fold increase; P < 0.05) and more likely to develop multiple tumors, as 20% of the beta-pol(+/-) animals died bearing multiple tumors compared with only 5% of the beta-pol(+/+) animals (P < 0.05). In spite of accelerated tumor development, no gross effect of beta-pol heterozygosity was seen with respect to life span. However, the survival curves for the beta-pol(+/+) and beta-pol(+/-) mice are not identical. A maximum likelihood estimation analysis showed a modest but significant (P < 0.05) acceleration of the age-dependent mortality rate in beta-pol(+/-) mice. Thus, the beta-pol(+/-) mouse represents a model in which mortality rate and tumor development are accelerated and provides evidence supporting the role of genomic maintenance in both aging and carcinogenesis.


Subject(s)
DNA Polymerase beta/genetics , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/genetics , Age Factors , Animals , DNA Damage , DNA Polymerase beta/metabolism , DNA Repair , Haploidy , Longevity , Male , Mice , Risk Factors
13.
Cell Death Dis ; 9(5): 442, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29670108

ABSTRACT

The loss of p300/CBP-associated protein (PCAF) expression is associated with poor clinical outcome in gastric cancer, and a potential bio-marker for invasive and aggressive tumors. However, the mechanism linking loss of PCAF to the onset of gastric cancer has not been identified. Given that PCAF and its binding partner transcriptional adaptor protein 3 (ADA3) were recently shown to regulate the intrinsic (mitochondrial) pathway to apoptosis via epigenetic regulation of phosphofurin acidic cluster sorting proteins 1 and 2 (PACS1, PACS2), we analyzed PCAF, ADA3, and PACS1/2 expression in 99 patient-matched surgical samples ranging from normal gastric mucosa, through pre-malignant chronic gastritis and intestinal metaplasia to stage I-III invasive cancers. PCAF mRNA levels were not reduced in either pre-malignant state but were significantly down-regulated in all stages of gastric cancer, commencing at AJCC stage I (p < 0.05), thus linking reduced PCAF expression with early malignant change. Furthermore, patients with combined reduction of PCAF and PACS1 had significantly poorer overall survival (p = 0.0257), confirmed in an independent dataset of 359 patients (p = 5.8 × 10e-6). At the protein level, PCAF, ADA3, and PACS1 expression were all significantly down-regulated in intestinal-type gastric cancer, and correlated with reduced progression free survival. We conclude that a pro-apoptotic mechanism centered on the intrinsic (mitochondrial) pathway and regulated by PCAF/ADA3 can influence the progression from premalignant to malignant change, and thus act as a tumor suppression mechanism in gastric cancer.


Subject(s)
Apoptosis , Down-Regulation , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/biosynthesis , Stomach Neoplasms/metabolism , Transcription Factors/biosynthesis , p300-CBP Transcription Factors/biosynthesis , Female , Humans , Male , Neoplasm Proteins/genetics , Neoplasm Staging , Stomach Neoplasms/pathology , Transcription Factors/genetics , p300-CBP Transcription Factors/genetics
14.
Sci Rep ; 8(1): 825, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29339747

ABSTRACT

Gastric cancer is a leading cause of cancer death worldwide, with advanced stage being correlated to the level of tumour invasion and metastasis. Current research is heavily focused on the identification and development of efficacious therapeutics targeting these fundamental hallmarks of cancer, however there are currently no animal models that mimic the invasive phenotypes observed in humans. To address this we have developed an orthotopic mouse model whereby gastric cancer cell lines are tagged with luciferase and injected into the subserosal layer of the stomach. This allows for the monitoring of primary tumour growth and metastasis in real-time as well as quantitation of the degree of tumour invasion through the stomach wall by immunohistochemistry. We have three models based on the degree of invasion and metastasis that are cell line specific: The AGS cells develop into invasive tumours by 4-weeks with no evidence of metastases, MKN45 cells are moderately metastatic with minimal invasion till week 2 and MKN28 cells are highly metastatic and fully invasive by week 1. These models have utility as a tool for testing the efficacy of anti-tumour, anti-invasive and anti-metastatic therapies in the setting of gastric cancer, which currently has poor treatment options.


Subject(s)
Stomach Neoplasms/pathology , Abdominal Neoplasms/pathology , Abdominal Neoplasms/secondary , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Mice, Knockout , Mucous Membrane/pathology , Neoplasm Invasiveness , Optical Imaging , Stomach Neoplasms/diagnostic imaging , Thoracic Neoplasms/pathology , Thoracic Neoplasms/secondary , Transplantation, Heterologous
15.
DNA Repair (Amst) ; 5(1): 52-60, 2006 Jan 05.
Article in English | MEDLINE | ID: mdl-16126462

ABSTRACT

Transgenic mice harboring the lacZ gene within a plasmid that can be recovered and amplified in Escherichia coli, to establish mutant frequencies and spectra, have provided crucial insights into the relationships between mutations, cancer and aging in vivo. Here, we use embryonic fibroblasts from transgenic lacZ-plasmid reporter mice to determine the relationship between cell proliferation in culture and mutations induced by ultraviolet (UV) light. A single dose of 2.5J/m2 of UVC to actively proliferating cells caused an approximately eight-fold increase in mutant frequency 24 h after irradiation. Identically treated quiescent cells showed a two-fold increase in mutant frequency. Thus, whereas proliferation facilitated the acquisition of mutations, it was not an absolute requirement. Characterization of the UV-induced mutations indicated that the lower mutant frequency in quiescent cells was due mainly to a reduction in point mutations; size-change mutations, indicative of translocations or deletions, were relatively unaffected by the growth state of the cells. To investigate long-term genomic stability after UVC-induced damage, we monitored the lacZ locus in irradiated cells passaged for many generations in culture. The results indicated the emergence of jackpot mutations of rapidly changing frequency, most likely reflecting the successive emergence and decline of dominant cell clones during long-term culture. These findings show that the lacZ-plasmid locus is a valid reporter for studying induced mutations in short-term cultures of both quiescent and proliferating fibroblasts. In long-term cultures, the locus is less suitable for studying induced mutations owing to the instability of the cell population.


Subject(s)
Fibroblasts/cytology , Lac Operon , Mutation , Plasmids/genetics , Animals , Cell Proliferation , Cells, Cultured , DNA/biosynthesis , Embryo, Mammalian/cytology , Escherichia coli/genetics , Fibroblasts/radiation effects , Genes, Reporter , Mice , Mice, Transgenic , Ultraviolet Rays/adverse effects
16.
Methods Mol Biol ; 371: 267-87, 2007.
Article in English | MEDLINE | ID: mdl-17634588

ABSTRACT

Methods to detect and analyze somatic mutations in higher organisms are critically important in view of their causal role in cancer, heritable diseases, and, possibly, aging. Here, we describe detailed protocols for the use of a mutational reporter system based on lacZ-containing plasmids integrated in the germline of Mus musculus and Drosophila melanogaster. Plasmids containing the bacterial lacZ gene integrated at one or more chromosomal sites can be excised, purified and recovered in suitable Escherichia coli hosts allowing the positive selection of mutant lacZ genes and their further molecular characterization. This system is capable of detecting a broad range of mutational events, varying from small mutations in the lacZ reporter gene to large genome rearrangements with one breakpoint in lacZ and the other breakpoint elsewhere in the genome.


Subject(s)
Aging/genetics , Cloning, Molecular , Gene Rearrangement , Lac Operon , Mutation , Quantitative Trait Loci , Transgenes , Animals , Drosophila melanogaster , Mice , Mice, Transgenic
17.
Cancer Res ; 65(24): 11271-5, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16357131

ABSTRACT

Reactive oxygen species have been implicated as a cause of cancer and aging in mammals. Mice deficient for the antioxidant enzyme CuZn-superoxide dismutase (Sod1) have a decreased life span and an elevated incidence of liver cancer. To test the hypothesis that the cancer-prone phenotype in such mice is due to accelerated spontaneous mutation accumulation, we crossed these mutants with mice harboring a neutral lacZ mutation reporter gene. At 2 months of age, the lacZ mutation frequency in the liver of the hybrid animals was already twice as high as in littermate controls of the same age. This difference in mutation frequency increased to >3-fold at 6 months of age, after which it did not increase any further. Characterization of the mutation spectra in liver of the Sod1-null mice indicated mainly GC-to-TA transversions and GC-to-AT transitions, signature mutations of oxidative stress. The accelerated mutation accumulation in liver was accompanied by an increased frequency of apoptotic cells, as indicated by an increase in both terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling- and caspase 3-stained cells at 6 and 12 months of age. In kidney, an elevated mutation frequency above controls of approximately 2.5-fold was found not earlier than at 6 months. No increased mutation accumulation was observed in brain or spleen. These results support the hypothesis, that oxidative stress is an important causal factor of cancer in mammals.


Subject(s)
Apoptosis , Lac Operon/genetics , Liver Neoplasms, Experimental/etiology , Mutation , Superoxide Dismutase/physiology , Animals , Brain/enzymology , Brain/pathology , Female , Kidney/enzymology , Kidney/pathology , Liver Neoplasms, Experimental/enzymology , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Specificity , Oxidative Stress , Spleen/enzymology , Spleen/pathology , Superoxide Dismutase/deficiency
18.
PLoS One ; 12(9): e0183891, 2017.
Article in English | MEDLINE | ID: mdl-28922362

ABSTRACT

BACKGROUND: Survival from gastric cancer remains poor, particularly in Western populations. Previous pre-clinical and subgroup analyses of clinical trials have suggested differing benefits from fluoropyrimidine-based chemotherapeutics for diffuse and intestinal gastric cancer. This analysis examines patterns of relapse with and without adjuvant chemotherapy after curative resection for gastric cancer in these subtypes to explore the Lauren classification as a predictive marker of benefit for fluoropyrimidine-based adjuvant chemotherapy. PATIENTS AND METHODS: Gastric cancer patients enrolled in an ongoing tissue banking study were analysed, 164 patients who would currently be considered for adjuvant therapy after curative resection were included in the analysis. Patients who did and did not receive adjuvant chemotherapy were compared. The primary end point was relapse free survival. RESULTS: Approximately 50% of patients received adjuvant chemotherapy, the majority receiving a fluoropyrimidine-based regimen. The comparison of Kaplan-Meier curves for patients who did and did not receive adjuvant chemotherapy are different between patients with intestinal and diffuse gastric cancer, and suggest that there may be a benefit in intestinal gastric cancer. The hazard ratio for adjuvant chemotherapy for intestinal gastric cancer was 0.56, (95% CI 0.27-1.17), suggesting a trend towards benefit that was lacking in diffuse gastric cancer patients (1.26, 95% CI 0.70-2.38). The patterns of relapse after adjuvant chemotherapy also differed between diffuse and intestinal gastric cancer. More than 50% of diffuse gastric cancer patients who received adjuvant chemotherapy relapsed within 12 months of surgery despite similar surgical parameters. CONCLUSIONS: Lauren classification is prognostic in gastric cancer. This analysis adds further evidence that it may also be predictive of benefit for fluoropyrimidine-based chemotherapeutics, with lower chemosensitivity seen in diffuse gastric cancer. Treating diffuse and intestinal gastric cancer as separate entities, with identification of efficacious treatments for diffuse gastric cancer will help in improving outcomes from gastric cancer.


Subject(s)
Chemotherapy, Adjuvant , Drug Resistance, Neoplasm/drug effects , Neoplasm Recurrence, Local , Stomach Neoplasms , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/classification , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/mortality , Stomach Neoplasms/classification , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Survival Rate
19.
Mutat Res ; 596(1-2): 22-35, 2006 Apr 11.
Article in English | MEDLINE | ID: mdl-16472827

ABSTRACT

Genetic defects in nucleotide excision repair (NER) are associated with premature aging, including cancer, in both humans and mice. To investigate the possible role of increased somatic mutation accumulation in the accelerated appearance of symptoms of aging as a consequence of NER deficiency, we crossed four different mouse mutants, Xpa-/-, Ercc6(Csb)-/-, Ercc2(Xpd)m/m and Ercc1-/m, with mice harboring lacZ-reporter genes to assess mutant frequencies and spectra in different organs during aging. The results indicate an accelerated accumulation of mutations in both liver and kidney of Xpa defective mice, which correlated with a trend towards a decreased lifespan. Until 52 weeks, Xpa deficiency resulted mainly in 1-bp deletions. At old age (104 weeks), the spectrum had undergone a shift, in both organs, to G:C-->T:A transversions, a signature mutation of oxidative DNA damage. Ercc1-/m mice, with their short lifespan of 6 months and severe symptoms of premature aging, especially in liver and kidney, displayed an even faster lacZ-mutant accumulation in liver. In this case, the excess mutations were mostly genome rearrangements. Csb-/- mice, with mild premature aging features and no reduction in lifespan, and Xpdm/m mice, exhibiting prominent premature aging features and about 20% reduction in lifespan, did not have elevated lacZ-mutant frequencies. It is concluded that while increased genomic instability could play a causal role in the mildly accelerated aging phenotype in the Xpa-null mice or in the severe progeroid symptoms of the Ercc1-mutant mice, shortened lifespan in mice with defects in transcription-related repair do not depend upon increased mutation accumulation.


Subject(s)
DNA Repair/genetics , Genome , Mutation , Aging, Premature/genetics , Animals , Base Sequence , Chromosome Mapping , Crosses, Genetic , DNA Primers , Gene Rearrangement , Genes, Reporter , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , beta-Galactosidase/genetics
20.
World J Gastroenterol ; 22(28): 6373-84, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27605873

ABSTRACT

Like the wars predating the First World War where human foot soldiers were deemed tools in the battlefield against an enemy, so too are the host immune cells of a patient battling a malignant gastric cancer. Indeed, the tumour microenvironment resembles a battlefield, where the patient's immune cells are the defence against invading tumour cells. However, the relationship between different immune components of the host response to cancer is more complex than an "us against them" model. Components of the immune system inadvertently work against the interests of the host and become pro-tumourigenic while other components soldier on against the common enemy - the tumour cell.


Subject(s)
Adenocarcinoma/immunology , Immunotherapy , Stomach Neoplasms/immunology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Adenocarcinoma/therapy , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Humans , Stomach Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL