Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nature ; 577(7789): 266-270, 2020 01.
Article in English | MEDLINE | ID: mdl-31827282

ABSTRACT

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Subject(s)
Histone Acetyltransferases/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cell Line, Tumor , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Structure, Tertiary
2.
Histopathology ; 76(7): 976-987, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31994214

ABSTRACT

AIMS: Apolipoprotein D (ApoD) is a protein that is regulated by androgen and oestrogen, and is a major constituent of breast cysts. Although ApoD has been reported to be a marker of breast cancer, its prognostic importance in invasive breast cancer is unclear. The aim of this study was to investigate the relationship between ApoD protein expression, oestrogen receptor-α (ERα) expression and androgen receptor (AR) expression in predicting breast cancer outcome. METHODS AND RESULTS: ApoD levels were measured by the use of immunohistochemistry and video image analysis on tissue sections from a breast cancer cohort (n = 214). We assessed the associations of ApoD expression with disease-free survival (DFS), metastasis-free survival (MFS), and overall survival (OS). We also assessed the relationship between ApoD expression, AR expression and ERα expression in predicting OS. ApoD expression (>1% ApoD positivity) was found in 72% (154/214) of tissues. High ApoD positivity (≥20.7%, fourth quartile) was an independent predictor of MFS and OS, and conferred a 2.2-fold increased risk of developing metastatic disease and a 2.1-fold increased risk of breast cancer-related death. ApoD positivity was not associated with AR or ERα nuclear positivity. However, patients with (≥1%) ERα-positive cancers with low (<20.7%) ApoD positivity, or those showing high (≥78%) AR positivity and low (<20.7%) ApoD positivity had better OS than other patient groups. CONCLUSIONS: ApoD expression could be used to predict breast cancer prognosis independently of ERα and AR expression.


Subject(s)
Apolipoproteins D/metabolism , Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Adult , Apolipoproteins D/analysis , Female , Humans , Middle Aged , Prognosis , Treatment Outcome
3.
Cancer Epidemiol Biomarkers Prev ; 17(9): 2488-97, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18768520

ABSTRACT

The glycosaminoglycan chondroitin sulfate is significantly increased in the peritumoral stroma of prostate tumors compared with normal stroma and is an independent predictor of prostate-specific antigen (PSA) relapse following radical prostatectomy. In this study, we determined whether specific alterations in the sulfation pattern of glycosaminoglycan chains in clinically organ-confined prostate cancer are associated with PSA relapse. Immunoreactivity to distinct glycosaminoglycan disaccharide epitopes was assessed by manually scoring the staining intensity in prostate tissues from patients with benign prostatic hyperplasia (n = 19), early-stage cancer (cohort 1, n = 55 and cohort 2, n = 275), and advanced-stage cancer (n = 20). Alterations to glycosaminoglycans in benign and malignant prostate tissues were determined by cellulose acetate chromatography and high-pressure liquid chromatography. Glycosaminoglycan disaccharide epitopes were localized to the peritumoral stroma of clinically localized prostate cancer. The level of immunostaining for unsulfated disaccharides (C0S) in the peritumoral stroma, but not for 4-sulfated (C4S) or 6-sulfated disaccharides (C6S), was significantly associated with the rate of PSA relapse following radical prostatectomy. High levels of C0S immunostaining were determined to be an independent predictor of PSA relapse (1.6-fold, P = 0.020). Advanced-stage prostate cancer tissues exhibited reduced electrophoretic mobility for chondroitin sulfate and increased unsulfated disaccharides when compared with benign prostatic hyperplasia tissues, whereas the sulfated disaccharide levels were unaffected. The level of C0S immunostaining in the peritumoral stroma is an independent determinant of PSA failure in clinically localized prostate cancer. Specific alterations to chondroitin sulfate side chains occurring during tumor development may be a crucial step for disease progression in prostate cancer.


Subject(s)
Chondroitin/metabolism , Disaccharides/metabolism , Prostatic Neoplasms/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Epitopes , Humans , Immunohistochemistry , Male , Middle Aged , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/pathology
4.
Oncotarget ; 8(26): 42438-42454, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28465491

ABSTRACT

Genomic alterations involving translocations of the ETS-related gene ERG occur in approximately half of prostate cancer cases. These alterations result in aberrant, androgen-regulated production of ERG protein variants that directly contribute to disease development and progression. This study describes the discovery and characterization of a new class of small molecule ERG antagonists identified through rational in silico methods. These antagonists are designed to sterically block DNA binding by the ETS domain of ERG and thereby disrupt transcriptional activity. We confirmed the direct binding of a lead compound, VPC-18005, with the ERG-ETS domain using biophysical approaches. We then demonstrated VPC-18005 reduced migration and invasion rates of ERG expressing prostate cancer cells, and reduced metastasis in a zebrafish xenograft model. These results demonstrate proof-of-principal that small molecule targeting of the ERG-ETS domain can suppress transcriptional activity and reverse transformed characteristics of prostate cancers aberrantly expressing ERG. Clinical advancement of the developed small molecule inhibitors may provide new therapeutic agents for use as alternatives to, or in combination with, current therapies for men with ERG-expressing metastatic castration-resistant prostate cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery , ETS Motif , Prostatic Neoplasms/metabolism , Protein Interaction Domains and Motifs , Transcriptional Regulator ERG/chemistry , Transcriptional Regulator ERG/metabolism , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Drug Discovery/methods , Gene Expression Regulation, Neoplastic , Humans , Magnetic Resonance Spectroscopy , Male , Models, Molecular , Molecular Conformation , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Protein Binding , Structure-Activity Relationship , Transcriptional Regulator ERG/genetics , Zebrafish
5.
Sci Rep ; 6: 28950, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27358191

ABSTRACT

Small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) has been implicated as a co-chaperone and regulator of androgen and growth hormone receptor (AR, GHR) signalling. We investigated the functional consequences of partial and full Sgta ablation in vivo using Cre-lox Sgta-null mice. Sgta(+/-) breeders generated viable Sgta(-/-) offspring, but at less than Mendelian expectancy. Sgta(-/-) breeders were subfertile with small litters and higher neonatal death (P < 0.02). Body size was significantly and proportionately smaller in male and female Sgta(-/-) (vs WT, Sgta(+/-) P < 0.001) from d19. Serum IGF-1 levels were genotype- and sex-dependent. Food intake, muscle and bone mass and adiposity were unchanged in Sgta(-/-). Vital and sex organs had normal relative weight, morphology and histology, although certain androgen-sensitive measures such as penis and preputial size, and testis descent, were greater in Sgta(-/-). Expression of AR and its targets remained largely unchanged, although AR localisation was genotype- and tissue-dependent. Generally expression of other TPR-containing proteins was unchanged. In conclusion, this thorough investigation of SGTA-null mutation reports a mild phenotype of reduced body size. The model's full potential likely will be realised by genetic crosses with other models to interrogate the role of SGTA in the many diseases in which it has been implicated.


Subject(s)
Molecular Chaperones/metabolism , Animals , Body Size , Female , Male , Mice , Mice, Knockout , Molecular Chaperones/genetics , Survival Analysis
6.
Cancer Treat Rev ; 40(10): 1137-52, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25455729

ABSTRACT

Nuclear receptors (NRs), a family of 48 transcriptional factors, have been studied intensively for their roles in cancer development and progression. The presence of distinctive ligand binding sites capable of interacting with small molecules has made NRs attractive targets for developing cancer therapeutics. In particular, a number of drugs have been developed over the years to target human androgen- and estrogen receptors for the treatment of prostate cancer and breast cancer. In contrast, orphan nuclear receptors (ONRs), which in many cases lack known biological functions or ligands, are still largely under investigated. This review is a summary on ONRs that have been implicated in prostate and breast cancers, specifically retinoic acid-receptor-related orphan receptors (RORs), liver X receptors (LXRs), chicken ovalbumin upstream promoter transcription factors (COUP-TFs), estrogen related receptors (ERRs), nerve growth factor 1B-like receptors, and ''dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1'' (DAX1). Discovery and development of small molecules that can bind at various functional sites on these ONRs will help determine their biological functions. In addition, these molecules have the potential to act as prototypes for future drug development. Ultimately, the therapeutic value of targeting the ONRs may go well beyond prostate and breast cancers.


Subject(s)
Breast Neoplasms/drug therapy , Molecular Targeted Therapy/methods , Orphan Nuclear Receptors/metabolism , Prostatic Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , COUP Transcription Factor I/metabolism , COUP Transcription Factors/metabolism , DAX-1 Orphan Nuclear Receptor/metabolism , Female , Humans , Liver X Receptors , Male , Membrane Transport Proteins/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Prostatic Neoplasms/metabolism , Small Molecule Libraries/pharmacology
7.
Horm Cancer ; 4(3): 154-64, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23443946

ABSTRACT

The androgen receptor (AR) is expressed in a majority of ovarian carcinomas, but its role in disease development remains unclear. In this study, AR and a novel AR molecular chaperone called small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) were investigated to assess their potential role in ovarian carcinogenesis. First, an AR and SGTA-positive ovarian cancer cell line was identified to examine whether SGTA influenced AR subcellular localization. Next, relative protein levels of AR and SGTA were measured in two sets of clinical samples: (1) 46 serous ovarian carcinomas (stages I-IV), 9 serous borderline tumors, and 11 benign ovarian tumors; and (2) 24 patient-matched stage III primary and metastatic serous ovarian tumors. Ablation of SGTA protein in OVCAR3 cells significantly increased AR nuclear localization under basal (p ≤ 0.001) and androgen-stimulated (p ≤ 0.001) conditions. In the first clinical set, AR levels were significantly lower in early- (I/II) and late-stage (III/IV) cancers compared with benign (p ≤ 0.001) but not borderline ovarian tumors. SGTA alone did not discriminate between groups but the AR/SGTA ratio was significantly lower in carcinomas and borderline tumors compared with benign tumors (p ≤ 0.001 and 0.015, respectively). In the second clinical set, matched primary and metastatic serous ovarian cancers did not significantly differ for any parameter measured. Collectively, our results suggest that SGTA can influence AR signaling in ovarian cancer cells and that AR signaling capacity may be reduced with the development but not metastatic progression of serous ovarian cancer.


Subject(s)
Carcinoma/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Receptors, Androgen/genetics , Adult , Aged , Aged, 80 and over , Carcinoma/pathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Disease Progression , Female , Humans , Middle Aged , Molecular Chaperones , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasm Staging , Ovarian Neoplasms/metabolism , Receptors, Androgen/metabolism , Signal Transduction
8.
Horm Cancer ; 4(6): 343-57, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23818240

ABSTRACT

Small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) is a steroid receptor molecular co-chaperone that may substantially influence hormone action and, consequently, hormone-mediated carcinogenesis. To date, published studies describe SGTA as a protein that is potentially critical in a range of biological processes, including viral infection, cell division, mitosis, and cell cycle checkpoint activation. SGTA interacts with the molecular chaperones, heat shock protein 70 (HSP70) and HSP90, and with steroid receptor complexes, including those containing the androgen receptor. Steroid receptors are critical for maintaining cell growth and differentiation in hormonally regulated tissues, such as male and female reproductive tissues, and also play a role in disease states involving these tissues. There is growing evidence that, through its interactions with chaperones and steroid receptors, SGTA may be a key player in the pathogenesis of hormonally influenced disease states, including prostate cancer and polycystic ovary syndrome. Research into the function of SGTA has been conducted in several model organisms and cell types, with these studies showing that SGTA functionality is cell-specific and tissue-specific. However, very few studies have been replicated in multiple cell types or experimental systems. Although a broad range of functions have been attributed to SGTA, there is a serious lack of mechanistic information to describe how SGTA acts. In this review, published evidence linking SGTA with hormonally regulated disease states is summarized and discussed, highlighting the need for future research to more clearly define the biological function(s) of this potentially important co-chaperone.


Subject(s)
Carrier Proteins/metabolism , Polycystic Ovary Syndrome/metabolism , Prostatic Neoplasms/metabolism , Animals , Female , Humans , Male , Models, Animal , Molecular Chaperones , Protein Folding , Steroids/metabolism
9.
Fertil Steril ; 99(7): 2076-83.e1, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23433514

ABSTRACT

OBJECTIVE: To evaluate the expression and function of small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA), an androgen receptor (AR) molecular chaperone, in human ovarian tissues. DESIGN: Examine the effect of SGTA on AR subcellular localization in granulosa tumor cells (KGN) and SGTA expression in ovarian tissues. SETTING: University-based research laboratory. PATIENT(S): Archived tissues from premenopausal women and granulosa cells from infertile women receiving assisted reproduction. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): AR subcellular localization and SGTA protein or mRNA levels. RESULT(S): SGTA and AR proteins were expressed in the cytoplasm of KGN cells and exposure to androgen stimulated AR nuclear localization. SGTA protein knockdown increased AR nuclear localization at low (0-0.1 nmol/L) but not high (1-10 nmol/L) concentrations of androgen hormone. In ovarian tissues, SGTA was localized to the cytoplasm of granulosa cells at all stages of folliculogenesis and in thecal cells of antral follicles. SGTA protein levels were similar when comparing primordial and primary follicles within core biopsies (n = 40) from women with and without polycystic ovary syndrome (PCOS). Likewise, SGTA mRNA levels were not significantly different in granulosa cells from preovulatory follicles after hyperstimulation of women with and without PCOS. CONCLUSION(S): SGTA is present in human ovaries and has the potential to modulate AR signalling, but it may not be differentially expressed in PCOS.


Subject(s)
Carrier Proteins/metabolism , Granulosa Cell Tumor/metabolism , Ovary/metabolism , Polycystic Ovary Syndrome/metabolism , Adult , Carrier Proteins/genetics , Case-Control Studies , Cell Line, Tumor , China , Dihydrotestosterone/pharmacology , Female , Granulosa Cell Tumor/genetics , Granulosa Cell Tumor/pathology , Humans , Middle Aged , Molecular Chaperones , Ovary/drug effects , Ovary/pathology , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Protein Transport , RNA Interference , RNA, Messenger/metabolism , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , South Australia , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL