Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell ; 184(5): 1330-1347.e13, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636130

ABSTRACT

Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.


Subject(s)
Bone Resorption/pathology , Osteoclasts/pathology , RANK Ligand/metabolism , Animals , Apoptosis , Bone Resorption/metabolism , Cell Fusion , Cells, Cultured , Humans , Macrophages/cytology , Mice , Osteochondrodysplasias/drug therapy , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Osteoclasts/metabolism , Signal Transduction
3.
Immunity ; 54(5): 988-1001.e5, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33857421

ABSTRACT

Positive selection of high-affinity B cells within germinal centers (GCs) drives affinity maturation of antibody responses. Here, we examined the mechanism underlying the parallel transition from immunoglobulin M (IgM) to IgG. Early GCs contained mostly unswitched IgM+ B cells; IgG+ B cells subsequently increased in frequency, dominating GC responses 14-21 days after antigen challenge. Somatic hypermutation and generation of high-affinity clones occurred with equal efficiency among IgM+ and IgG+ GC B cells, and inactivation of Ig class-switch recombination did not prevent depletion of IgM+ GC B cells. Instead, high-affinity IgG+ GC B cells outcompeted high-affinity IgM+ GC B cells via a selective advantage associated with IgG antigen receptor structure but independent of the extended cytoplasmic tail. Thus, two parallel forms of GC B-cell-positive selection, based on antigen receptor variable and constant regions, respectively, operate in tandem to ensure high-affinity IgG antibodies predominate in mature serum antibody responses.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Animals , Antibody Formation/immunology , Antigens/immunology , Female , Immunoglobulin Class Switching/immunology , Immunoglobulin Variable Region/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sheep/immunology , Somatic Hypermutation, Immunoglobulin/immunology
4.
Immunity ; 47(6): 1142-1153.e4, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29262350

ABSTRACT

Memory B cells (MBCs) and plasma cells (PCs) constitute the two cellular outputs of germinal center (GC) responses that together facilitate long-term humoral immunity. Although expression of the transcription factor BLIMP-1 identifies cells undergoing PC differentiation, no such marker exists for cells committed to the MBC lineage. Here, we report that the chemokine receptor CCR6 uniquely marks MBC precursors in both mouse and human GCs. CCR6+ GC B cells were highly enriched within the GC light zone (LZ), were the most quiescent of all GC B cells, exhibited a cell-surface phenotype and gene expression signature indicative of an MBC transition, and possessed the augmented response characteristics of MBCs. MBC precursors within the GC LZ predominantly possessed a low affinity for antigen but also included cells from within the high-affinity pool. These data indicate a fundamental dichotomy between the processes that drive MBC and PC differentiation during GC responses.


Subject(s)
Germinal Center/immunology , Immunity, Humoral , Plasma Cells/immunology , Precursor Cells, B-Lymphoid/immunology , Receptors, CCR6/immunology , Animals , B7-2 Antigen/genetics , B7-2 Antigen/immunology , Cell Differentiation , Cell Lineage/immunology , Gene Expression Profiling , Gene Expression Regulation , Germinal Center/cytology , Humans , Immunologic Memory , Immunophenotyping , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Plasma Cells/cytology , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/immunology , Precursor Cells, B-Lymphoid/cytology , Receptors, CCR6/genetics , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , Signal Transduction
5.
Immunity ; 42(5): 890-902, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25979420

ABSTRACT

The mechanistic links between genetic variation and autoantibody production in autoimmune disease remain obscure. Autoimmune lymphoproliferative syndrome (ALPS) is caused by inactivating mutations in FAS or FASL, with autoantibodies thought to arise through failure of FAS-mediated removal of self-reactive germinal center (GC) B cells. Here we show that FAS is in fact not required for this process. Instead, FAS inactivation led to accumulation of a population of unconventional GC B cells that underwent somatic hypermutation, survived despite losing antigen reactivity, and differentiated into a large population of plasma cells that included autoantibody-secreting clones. IgE(+) plasma cell numbers, in particular, increased after FAS inactivation and a major cohort of ALPS-affected patients were found to have hyper-IgE. We propose that these previously unidentified cells, designated "rogue GC B cells," are a major driver of autoantibody production and provide a mechanistic explanation for the linked production of IgE and autoantibodies in autoimmune disease.


Subject(s)
Autoantibodies/immunology , B-Lymphocytes/cytology , Germinal Center/cytology , Germinal Center/immunology , Immunoglobulin E/immunology , fas Receptor/immunology , Animals , Autoantibodies/biosynthesis , B-Lymphocytes/immunology , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunoglobulin E/biosynthesis , Mice , Polymerase Chain Reaction , fas Receptor/deficiency , fas Receptor/metabolism
6.
Immunity ; 37(5): 893-904, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23142780

ABSTRACT

Secondary diversification of the B cell repertoire by immunoglobulin gene somatic hypermutation in the germinal center (GC) is essential for providing the high-affinity antibody specificities required for long-term humoral immunity. While the risk to self-tolerance posed by inadvertent generation of self-reactive GC B cells has long been recognized, it has not previously been possible to identify such cells and study their fate. In the current study, self-reactive B cells generated de novo in the GC failed to survive when their target self-antigen was either expressed ubiquitously or specifically in cells proximal to the GC microenvironment. By contrast, GC B cells that recognized rare or tissue-specific self-antigens were not eliminated, and could instead undergo positive selection by cross-reactive foreign antigen and produce plasma cells secreting high-affinity autoantibodies. These findings demonstrate the incomplete nature of GC self-tolerance and may explain the frequent association of cross-reactive, organ-specific autoantibodies with postinfectious autoimmune disease.


Subject(s)
Autoantigens/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Animals , Antibody Affinity/genetics , Antibody Affinity/immunology , Autoantigens/genetics , Autoantigens/metabolism , B-Lymphocytes/metabolism , CHO Cells , Cell Line , Cellular Microenvironment/genetics , Cellular Microenvironment/immunology , Cricetinae , Cross Reactions , Genes, Immunoglobulin , Germinal Center/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Plasma Cells/immunology , Plasma Cells/metabolism , Somatic Hypermutation, Immunoglobulin/genetics , Somatic Hypermutation, Immunoglobulin/immunology
7.
Front Immunol ; 15: 1293883, 2024.
Article in English | MEDLINE | ID: mdl-38455057

ABSTRACT

Fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic scleroderma (SSc), are commonly associated with high morbidity and mortality, thereby representing a significant unmet medical need. Interleukin 11 (IL11)-mediated cell activation has been identified as a central mechanism for promoting fibrosis downstream of TGFß. IL11 signaling has recently been reported to promote fibroblast-to-myofibroblast transition, thus leading to various pro-fibrotic phenotypic changes. We confirmed increased mRNA expression of IL11 and IL11Rα in fibrotic diseases by OMICs approaches and in situ hybridization. However, the vital role of IL11 as a driver for fibrosis was not recapitulated. While induction of IL11 secretion was observed downstream of TGFß signaling in human lung fibroblasts and epithelial cells, the cellular responses induced by IL11 was quantitatively and qualitatively inferior to that of TGFß at the transcriptional and translational levels. IL11 blocking antibodies inhibited IL11Rα-proximal STAT3 activation but failed to block TGFß-induced profibrotic signals. In summary, our results challenge the concept of IL11 blockade as a strategy for providing transformative treatment for fibrosis.


Subject(s)
Interleukin-11 , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Signal Transduction , Fibrosis , Myofibroblasts/metabolism
9.
MAbs ; 10(4): 664-677, 2018.
Article in English | MEDLINE | ID: mdl-29436901

ABSTRACT

TL1A is an attractive therapeutic target for the treatment of mucosal inflammation associated with inflammatory bowel disease (IBD) and asthma. Blockade of the TL1A pathway has been shown to reduce inflammatory responses while leaving baseline immunity intact, and to be beneficial in animal models of colitis and asthma. Given the therapeutic potential of blocking this pathway in IBD and asthma, we developed C03V, a human antibody that binds with high affinity to soluble and membrane-bound TL1A. In an assay measuring apoptosis induced by exogenous TL1A, C03V was 43-fold more potent than the next most potent anti-TL1A antibody analyzed. C03V also potently inhibited endogenous TL1A activity in a primary cell-based assay. This potency was linked to the C03V-binding epitope on TL1A, encompassing the residue R32. This residue is critical for the binding of TL1A to its signaling receptor DR3 but not to its decoy receptor DcR3, and explains why C03V inhibited TL1A-DR3 binding to a much greater extent than TL1A-DcR3 binding. This characteristic may be advantageous to preserve some of the homeostatic functions of DcR3, such as TL1A antagonism. In colitis models, C03V significantly ameliorated microscopic, macroscopic and clinical aspects of disease pathology, and in an asthma model it significantly reduced airways inflammation. Notable in both types of disease model was the reduction in fibrosis observed after C03V treatment. C03V has the potential to address unmet medical needs in asthma and IBD.


Subject(s)
Antibodies, Monoclonal/pharmacology , Tumor Necrosis Factor Ligand Superfamily Member 15/antagonists & inhibitors , Animals , Antibodies, Monoclonal/chemistry , Asthma/immunology , Humans , Inflammatory Bowel Diseases/immunology
10.
Nat Commun ; 9(1): 3372, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135429

ABSTRACT

Vaccine-induced immunity depends on the generation of memory B cells (MBC). However, where and how MBCs are reactivated to make neutralising antibodies remain unknown. Here we show that MBCs are prepositioned in a subcapsular niche in lymph nodes where, upon reactivation by antigen, they rapidly proliferate and differentiate into antibody-secreting plasma cells in the subcapsular proliferative foci (SPF). This novel structure is enriched for signals provided by T follicular helper cells and antigen-presenting subcapsular sinus macrophages. Compared with contemporaneous secondary germinal centres, SPF have distinct single-cell molecular signature, cell migration pattern and plasma cell output. Moreover, SPF are found both in human and mouse lymph nodes, suggesting that they are conserved throughout mammalian evolution. Our data thus reveal that SPF is a seat of immunological memory that may be exploited to rapidly mobilise secondary antibody responses and improve vaccine efficacy.


Subject(s)
B-Lymphocytes/metabolism , Lymph Nodes/metabolism , Adenine/analogs & derivatives , Animals , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Movement/drug effects , Cells, Cultured , Flow Cytometry , Humans , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Models, Theoretical , Piperidines , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Tamoxifen/pharmacology
11.
J Exp Med ; 215(8): 2073-2095, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30018075

ABSTRACT

Gain-of-function (GOF) mutations in PIK3CD, encoding the p110δ subunit of phosphatidylinositide 3-kinase (PI3K), cause a primary immunodeficiency. Affected individuals display impaired humoral immune responses following infection or immunization. To establish mechanisms underlying these immune defects, we studied a large cohort of patients with PIK3CD GOF mutations and established a novel mouse model using CRISPR/Cas9-mediated gene editing to introduce a common pathogenic mutation in Pik3cd In both species, hyperactive PI3K severely affected B cell development and differentiation in the bone marrow and the periphery. Furthermore, PI3K GOF B cells exhibited intrinsic defects in class-switch recombination (CSR) due to impaired induction of activation-induced cytidine deaminase (AID) and failure to acquire a plasmablast gene signature and phenotype. Importantly, defects in CSR, AID expression, and Ig secretion were restored by leniolisib, a specific p110δ inhibitor. Our findings reveal key roles for balanced PI3K signaling in B cell development and long-lived humoral immunity and memory and establish the validity of treating affected individuals with p110δ inhibitors.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Class I Phosphatidylinositol 3-Kinases/genetics , Germ-Line Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , Animals , Antibody Affinity/immunology , Bone Marrow Cells/cytology , Cell Differentiation , Cell Proliferation , Child , Gain of Function Mutation/genetics , Humans , Immunoglobulin Class Switching , Immunoglobulins/metabolism , Interleukins/pharmacology , Mice , Models, Animal , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Plasma Cells/metabolism , Signal Transduction
12.
J Exp Med ; 214(5): 1259-1267, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28363897

ABSTRACT

Plasma cells (PCs) derived from germinal centers (GCs) secrete the high-affinity antibodies required for long-term serological immunity. Nevertheless, the process whereby GC B cells differentiate into PCs is uncharacterized, and the mechanism underlying the selective PC differentiation of only high-affinity GC B cells remains unknown. In this study, we show that differentiation into PCs is induced among a discrete subset of high-affinity B cells residing within the light zone of the GC. Initiation of differentiation required signals delivered upon engagement with intact antigen. Signals delivered by T follicular helper cells were not required to initiate differentiation but were essential to complete the differentiation process and drive migration of maturing PCs through the dark zone and out of the GC. This bipartite or two-signal mechanism has likely evolved to both sustain protective immunity and avoid autoantibody production.


Subject(s)
Antigens, Differentiation, B-Lymphocyte/physiology , B-Lymphocytes/physiology , Cell Differentiation/physiology , Germinal Center/physiology , Plasma Cells/physiology , T-Lymphocytes, Helper-Inducer/physiology , Animals , Mice , Mice, Inbred C57BL
13.
MAbs ; 2(5): 539-49, 2010.
Article in English | MEDLINE | ID: mdl-20724822

ABSTRACT

While current therapeutic antibodies bind to IL-12 and IL-23 and inhibit their binding to IL-12Rß1, we describe a novel antibody, termed 6F6, that binds to IL-12 and IL-23 and inhibits the interaction of IL-12 and IL-23 with their cognate signalling receptors IL-12Rß2 and IL23R. This antibody does not affect the natural inhibition of the IL-12/23 pathway by the antagonists monomeric IL-12p40 and IL-12p80, which suggests that a dual antagonist system is possible. We have mapped the epitope of 6F6 to domain 3 of the p40 chain common to IL-12 and IL-23 and demonstrate that an antibody bound to this epitope is sufficient to inhibit engagement of the signalling receptors. Antibodies with this unique mechanism of inhibition are potent inhibitors of IL-12 induced IFN-γ production and IL-23 induced IL-17 production in vitro, and in an in vivo model of psoriasis, treatment with a humanized variant of this antibody, h6F6, reduced the inflammatory response, resulting in decreased epidermal hyperplasia. We believe that this new class of IL-12/23 neutralising antibodies has the potential to provide improved potency and efficacy as anti-inflammatory agents, particularly in diseases characterized by an overproduction of IL-12.


Subject(s)
Antibodies, Monoclonal/immunology , Interleukin-12 Subunit p40/immunology , Recombinant Proteins/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Cell Line , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Hybridomas , Interferon-gamma/blood , Interferon-gamma/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Interleukin-12 Subunit p40/metabolism , Interleukin-23/immunology , Interleukin-23/metabolism , Jurkat Cells , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutation , Protein Binding/immunology , Receptors, Interleukin/immunology , Receptors, Interleukin/metabolism , Receptors, Interleukin-12/immunology , Receptors, Interleukin-12/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Signal Transduction/immunology , Skin/drug effects , Skin/immunology , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL