Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Biol Chem ; 299(3): 102959, 2023 03.
Article in English | MEDLINE | ID: mdl-36717078

ABSTRACT

The mammalian mitochondrial branched-chain ketoacid dehydrogenase (BCKD) complex is a multienzyme complex involved in the catabolism of branched-chain amino acids. BCKD is regulated by the BCKD kinase, or BCKDK, which binds to the E2 subunit of BCKD, phosphorylates its E1 subunit, and inhibits enzymatic activity. Inhibition of the BCKD complex results in increased levels of branched-chain amino acids and branched-chain ketoacids, and this buildup has been associated with heart failure, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. To find BCKDK inhibitors for potential treatment of these diseases, we performed both NMR and virtual fragment screening and identified tetrazole-bearing fragments that bind BCKDK at multiple sites. Through structure-based virtual screening expanding from these fragments, the angiotensin receptor blocker class antihypertension drugs and angiotensin receptor blocker-like compounds were discovered to be potent BCKDK inhibitors, suggesting potential new avenues for heart failure treatment combining BCKDK inhibition and antihypertension.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) , Angiotensin Receptor Antagonists , Humans , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Angiotensin Receptor Antagonists/pharmacology , Multienzyme Complexes/metabolism , Heart Failure , Hypertension
2.
J Org Chem ; 82(23): 12246-12256, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29096057

ABSTRACT

We report the diastereoselective synthesis of novel spiropiperidine templates for use in SAR studies of ß-secretase (BACE) inhibitors and also as versatile ligands for other receptor types. The overall synthetic approach stems from chiral starting material benzyl (S)-2-methyl-4-oxopiperidine-1-carboxylate and employs an Overman rearrangement to control the stereochemistry at the quaternary center. This process is followed by a Grubbs metathesis to close a five-membered "top" ring to form an α,ß-unsaturated lactam or an α,ß-unsaturated sultam. We also demonstrate that this chemistry can accommodate additional substituents on the lactam/sultam ring and allows late stage sequential functionalization of the amine and amide nitrogens to rapidly produce diverse analogues.

3.
J Med Chem ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687966

ABSTRACT

Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drug-drug interactions upon single-agent use of PF-07817883.

4.
J Med Chem ; 66(5): 3195-3211, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802610

ABSTRACT

The melanocortin-4 receptor (MC4R) is a centrally expressed, class A GPCR that plays a key role in the regulation of appetite and food intake. Deficiencies in MC4R signaling result in hyperphagia and increased body mass in humans. Antagonism of MC4R signaling has the potential to mitigate decreased appetite and body weight loss in the setting of anorexia or cachexia due to underlying disease. Herein, we report on the identification of a series of orally bioavailable, small-molecule MC4R antagonists using a focused hit identification effort and the optimization of these antagonists to provide clinical candidate 23. Introduction of a spirocyclic conformational constraint allowed for simultaneous optimization of MC4R potency and ADME attributes while avoiding the production of hERG active metabolites observed in early series leads. Compound 23 is a potent and selective MC4R antagonist with robust efficacy in an aged rat model of cachexia and has progressed into clinical trials.


Subject(s)
Appetite , Receptor, Melanocortin, Type 4 , Rats , Humans , Animals , Cachexia/drug therapy , Anorexia/drug therapy , Molecular Conformation
5.
J Med Chem ; 61(8): 3296-3308, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29356535

ABSTRACT

Alzheimer's disease (AD) is characterized by accumulation of ß-amyloid (Aß) plaques and neurofibrillary tau tangles in the brain. ß-Site amyloid precursor protein cleaving enzyme 1 (BACE1) plays a key role in the generation of Aß fragments via extracellular cleavage of the amyloid precursor protein (APP). We became interested in developing a BACE1 PET ligand to facilitate clinical assessment of BACE1 inhibitors and explore its potential in the profiling and selection of patients for AD trials. Using a set of PET ligand design parameters, compound 3 (PF-06684511) was rapidly identified as a lead with favorable in vitro attributes and structural handles for PET radiolabeling. Further evaluation in an LC-MS/MS "cold tracer" study in rodents revealed high specific binding to BACE1 in brain. Upon radiolabeling, [18F]3 demonstrated favorable brain uptake and high in vivo specificity in nonhuman primate (NHP), suggesting its potential for imaging BACE1 in humans.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Protease Inhibitors/pharmacology , Pyrazines/pharmacology , Radiopharmaceuticals/pharmacology , Thiazines/pharmacology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Fluorine Radioisotopes , Ligands , Male , Mice , Positron-Emission Tomography , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Thiazines/chemical synthesis , Thiazines/chemistry , Thiazines/pharmacokinetics
6.
J Med Chem ; 61(10): 4476-4504, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29613789

ABSTRACT

A major challenge in the development of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer's disease is the alignment of potency, drug-like properties, and selectivity over related aspartyl proteases such as Cathepsin D (CatD) and BACE2. The potential liabilities of inhibiting BACE2 chronically have only recently begun to emerge as BACE2 impacts the processing of the premelanosome protein (PMEL17) and disrupts melanosome morphology resulting in a depigmentation phenotype. Herein, we describe the identification of clinical candidate PF-06751979 (64), which displays excellent brain penetration, potent in vivo efficacy, and broad selectivity over related aspartyl proteases including BACE2. Chronic dosing of 64 for up to 9 months in dog did not reveal any observation of hair coat color (pigmentation) changes and suggests a key differentiator over current BACE1 inhibitors that are nonselective against BACE2 in later stage clinical development.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/metabolism , Drug Design , Hypopigmentation , Protease Inhibitors , Pyrans , Skin Pigmentation/drug effects , Thiazines , Thiazoles , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/drug effects , Cells, Cultured , Dogs , Humans , Hypopigmentation/chemically induced , Male , Melanocytes/drug effects , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Protease Inhibitors/administration & dosage , Protease Inhibitors/adverse effects , Protease Inhibitors/chemistry , Protein Conformation , Pyrans/administration & dosage , Pyrans/adverse effects , Pyrans/chemistry , Thiazines/administration & dosage , Thiazines/adverse effects , Thiazines/chemistry , Thiazoles/administration & dosage , Thiazoles/adverse effects , Thiazoles/chemistry
7.
J Med Chem ; 58(6): 2678-702, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25695670

ABSTRACT

The identification of centrally efficacious ß-secretase (BACE1) inhibitors for the treatment of Alzheimer's disease (AD) has historically been thwarted by an inability to maintain alignment of potency, brain availability, and desired absorption, distribution, metabolism, and excretion (ADME) properties. In this paper, we describe a series of truncated, fused thioamidines that are efficiently selective in garnering BACE1 activity without simultaneously inhibiting the closely related cathepsin D or negatively impacting brain penetration and ADME alignment, as exemplified by 36. Upon oral administration, these inhibitors exhibit robust brain availability and are efficacious in lowering central Amyloid ß (Aß) levels in mouse and dog. In addition, chronic treatment in aged PS1/APP mice effects a decrease in the number and size of Aß-derived plaques. Most importantly, evaluation of 36 in a 2-week exploratory toxicology study revealed no accumulation of autofluorescent material in retinal pigment epithelium or histology findings in the eye, issues observed with earlier BACE1 inhibitors.


Subject(s)
Amidines/chemistry , Amidines/therapeutic use , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Plaque, Amyloid/drug therapy , Alzheimer Disease/drug therapy , Amidines/pharmacokinetics , Amidines/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Brain/pathology , Dogs , Drug Design , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Male , Mice , Models, Molecular , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Rats , Rats, Wistar , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacokinetics , Sulfhydryl Compounds/pharmacology , Sulfhydryl Compounds/therapeutic use
8.
J Med Chem ; 55(2): 935-42, 2012 Jan 26.
Article in English | MEDLINE | ID: mdl-22148323

ABSTRACT

This paper describes the design and synthesis of a novel series of dual inhibitors of acetyl-CoA carboxylase 1 and 2 (ACC1 and ACC2). Key findings include the discovery of an initial lead that was modestly potent and subsequent medicinal chemistry optimization with a focus on lipophilic efficiency (LipE) to balance overall druglike properties. Free-Wilson methodology provided a clear breakdown of the contributions of specific structural elements to the overall LipE, a rationale for prioritization of virtual compounds for synthesis, and a highly successful prediction of the LipE of the resulting analogues. Further preclinical assays, including in vivo malonyl-CoA reduction in both rat liver (ACC1) and rat muscle (ACC2), identified an advanced analogue that progressed to regulatory toxicity studies.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Benzimidazoles/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Indazoles/chemical synthesis , Indoles/chemical synthesis , Pyrazoles/chemical synthesis , Spiro Compounds/chemical synthesis , Animals , Benzimidazoles/chemistry , Drug Design , Humans , Hypoglycemic Agents/chemistry , Indazoles/chemistry , Indoles/chemistry , Isoenzymes/antagonists & inhibitors , Liver/enzymology , Muscle, Skeletal/enzymology , Pyrazoles/chemistry , Quantitative Structure-Activity Relationship , Rats , Spiro Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL