Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Am J Hum Genet ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39096911

ABSTRACT

Co-observation of a gene variant with a pathogenic variant in another gene that explains the disease presentation has been designated as evidence against pathogenicity for commonly used variant classification guidelines. Multiple variant curation expert panels have specified, from consensus opinion, that this evidence type is not applicable for the classification of breast cancer predisposition gene variants. Statistical analysis of sequence data for 55,815 individuals diagnosed with breast cancer from the BRIDGES sequencing project was undertaken to formally assess the utility of co-observation data for germline variant classification. Our analysis included expected loss-of-function variants in 11 breast cancer predisposition genes and pathogenic missense variants in BRCA1, BRCA2, and TP53. We assessed whether co-observation of pathogenic variants in two different genes occurred more or less often than expected under the assumption of independence. Co-observation of pathogenic variants in each of BRCA1, BRCA2, and PALB2 with the remaining genes was less frequent than expected. This evidence for depletion remained after adjustment for age at diagnosis, study design (familial versus population-based), and country. Co-observation of a variant of uncertain significance in BRCA1, BRCA2, or PALB2 with a pathogenic variant in another breast cancer gene equated to supporting evidence against pathogenicity following criterion strength assignment based on the likelihood ratio and showed utility in reclassification of missense BRCA1 and BRCA2 variants identified in BRIDGES. Our approach has applicability for assessing the value of co-observation as a predictor of variant pathogenicity in other clinical contexts, including for gene-specific guidelines developed by ClinGen Variant Curation Expert Panels.

2.
Genet Med ; 25(8): 100882, 2023 08.
Article in English | MEDLINE | ID: mdl-37154150

ABSTRACT

PURPOSE: Screening with low-dose computed tomography reduces lung cancer (LC) mortality. Risk prediction models used for screening selection do not include genetic variables. Here, we investigated the performance of previously published polygenic risk scores (PRSs) for LC, considering their potential to improve screening selection. METHODS: We validated 9 PRSs in a high-risk case-control cohort, comprising genotype data from 652 surgical patients with LC and 550 cancer-free, high-risk (PLCOM2012 score ≥ 1.51%) participants of the Manchester Lung Health Check, a community-based LC screening program (n = 550). Discrimination (area under the curve [AUC]) between cases and controls was assessed for each PRS independently and alongside clinical risk factors. RESULTS: Median age was 67 years, 53% were female, 46% were current smokers, and 76% were National Lung Screening Trial eligible. Median PLCOM2012 score among controls was 3.4%, 80% of cases were early stage. All PRSs significantly improved discrimination, AUC increased between +0.002 (P = .02) and +0.015 (P < .0001), compared with clinical risk factors alone. The best-performing PRS had an independent AUC of 0.59. Two novel loci, in the DAPK1 and MAGI2 genes, were significantly associated with LC risk. CONCLUSION: PRSs may improve LC risk prediction and screening selection. Further research, particularly examining clinical utility and cost-effectiveness, is required.


Subject(s)
Lung Neoplasms , Humans , Female , Aged , Male , Risk Assessment/methods , Risk Factors , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Genotype , Case-Control Studies
3.
J Med Genet ; 59(2): 115-121, 2022 02.
Article in English | MEDLINE | ID: mdl-33758026

ABSTRACT

BACKGROUND: While the likelihood of identifying constitutional breast cancer-associated BRCA1, BRCA2 and TP53 pathogenic variants (PVs) increases with earlier diagnosis age, little is known about the correlation with age at diagnosis in other predisposition genes. Here, we assessed the contribution of known breast cancer-associated genes to very early onset disease. METHODS: Sequencing of BRCA1, BRCA2, TP53 and CHEK2 c.1100delC was undertaken in women with breast cancer diagnosed ≤30 years. Those testing negative were screened for PVs in a minimum of eight additional breast cancer-associated genes. Rates of PVs were compared with cases ≤30 years from the Prospective study of Outcomes in Sporadic vs Hereditary breast cancer (POSH) study. RESULTS: Testing 379 women with breast cancer aged ≤30 years identified 75 PVs (19.7%) in BRCA1, 35 (9.2%) in BRCA2, 22 (5.8%) in TP53 and 2 (0.5%) CHEK2 c.1100delC. Extended screening of 184 PV negative women only identified eight additional actionable PVs. BRCA1/2 PVs were more common in women aged 26-30 years than in younger women (p=0.0083) although the younger age group had rates more similar to those in the POSH cohort. Out of 26 women with ductal carcinoma in situ (DCIS) alone, most were high-grade and 11/26 (42.3%) had a PV (TP53=6, BRCA2=2, BRCA1=2, PALB2=1). This PV yield is similar to the 61 (48.8%) BRCA1/2 PVs identified in 125 women with triple-negative breast cancer. The POSH cohort specifically excluded pure DCIS which may explain lower TP53 PV rates in this group (1.7%). CONCLUSION: The rates of BRCA1, BRCA2 and TP53 PVs are high in very early onset breast cancer, with limited benefit from testing of additional breast cancer-associated genes.


Subject(s)
Breast Neoplasms/genetics , Checkpoint Kinase 2/genetics , Genes, BRCA1 , Genes, BRCA2 , Mutation , Adult , Age of Onset , DNA, Neoplasm , Female , Genes, p53 , Humans , Sequence Analysis, DNA
4.
Am J Hum Genet ; 103(2): 213-220, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30075112

ABSTRACT

Pathogenic variants in BRCA1 or BRCA2 are identified in ∼20% of families with multiple individuals affected by early-onset breast and/or ovarian cancer. Extensive searches for additional highly penetrant genes or alternative mutational mechanisms altering BRCA1 or BRCA2 have not explained the missing heritability. Here, we report a dominantly inherited 5' UTR variant associated with epigenetic BRCA1 silencing due to promoter hypermethylation in two families affected by breast and ovarian cancer. BRCA1 promoter methylation of ten CpG dinucleotides in families who are affected by breast and/or ovarian cancer but do not have germline BRCA1 or BRCA2 pathogenic variants was assessed by pyrosequencing and clonal bisulfite sequencing. RNA and DNA sequencing of BRCA1 from lymphocytes was undertaken to establish allelic expression and the presence of germline variants. BRCA1 promoter hypermethylation was identified in 2 of 49 families in which multiple women are affected by grade 3 breast cancer or high-grade serous ovarian cancer. Soma-wide BRCA1 promoter hypermethylation was confirmed in blood, buccal mucosa, and hair follicles. Pyrosequencing showed that DNA was ∼50% methylated, consistent with the silencing of one allele, which was confirmed by clonal bisulfite sequencing. RNA sequencing revealed the allelic loss of BRCA1 expression in both families and that this loss of expression segregated with the heterozygous variant c.-107A>T in the BRCA1 5' UTR. Our results establish a mechanism whereby familial breast and ovarian cancer is caused by an in cis 5' UTR variant associated with epigenetic silencing of the BRCA1 promoter in two independent families. We propose that methylation analyses be undertaken to establish the frequency of this mechanism in families affected by early-onset breast and/or ovarian cancer without a BRCA1 or BRCA2 pathogenic variant.


Subject(s)
5' Untranslated Regions/genetics , BRCA1 Protein/genetics , Breast Neoplasms/genetics , DNA Methylation/genetics , Germ-Line Mutation/genetics , Ovarian Neoplasms/genetics , Adult , Aged , Aged, 80 and over , BRCA2 Protein/genetics , Epigenesis, Genetic/genetics , Female , Genetic Predisposition to Disease/genetics , Humans , Middle Aged , Promoter Regions, Genetic/genetics
5.
Genet Med ; 23(10): 1969-1976, 2021 10.
Article in English | MEDLINE | ID: mdl-34113003

ABSTRACT

PURPOSE: To investigate the contribution of PALB2 pathogenic gene variants (PGVs, PALB2_PGV) and the CHEK2 c.1100delC (CHEK2_1100delC) PGV to familial breast and ovarian cancer, and PALB2_PGV associated breast cancer pathology. METHODS: Outcomes of germline PALB2_PGV and CHEK2_1100delC testing were recorded in 3,127 women with histologically confirmed diagnoses of invasive breast cancer, carcinoma in situ, or epithelial nonmucinous ovarian cancer, and 1,567 female controls. Breast cancer pathology was recorded in PALB2_PGV cases from extended families. RESULTS: Thirty-five PALB2 and 44 CHEK2_1100delC PGVs were detected in patients (odds ratio [OR] PALB2 breast-ovarian = 5.90 [95% CI: 1.92-18.36], CHEK2 breast-ovarian = 4.46 [95% CI: 1.86-10.46], PALB2 breast = 6.16 [95% CI: 1.98-19.21], CHEK2 breast = 4.89 [95% CI: 2.01-11.34]). Grade 3 ER-positive HER2-negative, grade 3 and triple negative (TN) tumors were enriched in cases with PALB2 PGVs compared with all breast cancers known to our service (respectively: 15/43, 254/1,843, P = 0.0005; 28/37, 562/1,381, P = 0.0001; 12/43, 204/1,639, P < 0.0001). PALB2_PGV likelihood increased with increasing Manchester score (MS) (MS < 15 = 17/1,763, MS 20-39 = 11/520, P = 0.04) but not for CHEK2_1100delC (MS < 15 = 29/1,762, MS 20-39 = 4/520). PALB2 PGVs showed perfect segregation in 20/20 first-degree relatives with breast cancer, compared with 7/13 for CHEK2_1100delC (P = 0.002). CONCLUSION: PALB2 PGVs and CHEK2_1100delC together account for ~2.5% of familial breast/ovarian cancer risk. PALB2 PGVs are associated with grade 3, TN, and grade 3 ER-positive HER2-negative breast tumors.


Subject(s)
Breast Neoplasms , Checkpoint Kinase 2 , Fanconi Anemia Complementation Group N Protein , Ovarian Neoplasms , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Checkpoint Kinase 2/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Female , Genetic Predisposition to Disease , Humans , Odds Ratio , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/genetics
6.
Hum Mutat ; 37(3): 250-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26615784

ABSTRACT

Heterozygous whole gene deletions (WGDs), and intragenic microdeletions, account for a significant proportion of mutations underlying cancer predisposition syndromes. We analyzed the frequency and genotype-phenotype correlations of microdeletions in 12 genes (BRCA1, BRCA2, TP53, MSH2, MLH1, MSH6, PMS2, NF1, NF2, APC, PTCH1, and VHL) representing seven tumor predisposition syndromes in 5,897 individuals (2,611 families) from our center. Overall, microdeletions accounted for 14% of identified mutations. As expected, smaller deletions or duplications were more common (12%) than WGDs (2.2%). Where a WGD was identified in the germline in NF2, the mechanism of somatic second hit was not deletion, as previously described for NF1. For neurofibromatosis type 1 and 2, we compared the mechanism of germline deletion. Unlike NF1, where three specific deletion sizes account for most germline WGDs, NF2 deletion breakpoints were different across seven samples tested. One of these deletions was 3.93 Mb and conferred a severe phenotype, thus refining the region for a potential NF2 modifier gene to a 2.04-Mb region on chromosome 22. The milder phenotype of NF2 WGDs may be due to the apparent absence of chromosome 22 loss as the second hit. These observations of WGD phenotypes will be helpful for interpreting incidental findings from microarray analysis and next-generation sequencing.


Subject(s)
Chromosomes, Human, Pair 22/genetics , Gene Deletion , Adult , BRCA1 Protein/genetics , BRCA2 Protein/genetics , DNA-Binding Proteins/genetics , Female , Genotype , Germ-Line Mutation/genetics , Humans , Middle Aged , MutS Homolog 2 Protein/genetics , Mutation/genetics , Tumor Suppressor Protein p53/genetics
7.
Fam Cancer ; 21(2): 129-136, 2022 04.
Article in English | MEDLINE | ID: mdl-33763779

ABSTRACT

PURPOSE: Lobular breast cancer (LBC) accounts for ~ 15% of breast cancer. Here, we studied the frequency of pathogenic germline variants (PGVs) in an extended panel of genes in women affected with LBC. METHODS: 302 women with LBC and 1567 without breast cancer were tested for BRCA1/2 PGVs. A subset of 134 LBC affected women who tested negative for BRCA1/2 PGVs underwent extended screening, including: ATM, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51D, and TP53. RESULTS: 35 PGVs were identified in the group with LBC, of which 22 were in BRCA1/2. Ten actionable PGVs were identified in additional genes (ATM(4), CDH1(1), CHEK2(1), PALB2(2) and TP53(2)). Overall, PGVs in three genes conferred a significant increased risk for LBC. Odds ratios (ORs) were: BRCA1: OR = 13.17 (95%CI 2.83-66.38; P = 0.0017), BRCA2: OR = 10.33 (95%CI 4.58-23.95; P < 0.0001); and ATM: OR = 8.01 (95%CI 2.52-29.92; P = 0.0053). We did not detect an increased risk of LBC for PALB2, CDH1 or CHEK2. CONCLUSION: The overall PGV detection rate was 11.59%, with similar rates of BRCA1/2 (7.28%) PGVs as for other actionable PGVs (7.46%), indicating a benefit for extended panel genetic testing in LBC. We also report a previously unrecognised association of pathogenic variants in ATM with LBC.


Subject(s)
Breast Neoplasms , Breast Neoplasms/diagnosis , Female , Genes, BRCA2 , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Humans
8.
Eur J Hum Genet ; 23(5): 708-10, 2015 May.
Article in English | MEDLINE | ID: mdl-25159867

ABSTRACT

Gorlin syndrome is an autosomal dominant disorder, characterized by multiple early-onset basal cell carcinomas (BCCs) and jaw keratocysts. Through association studies in cohorts of sporadic BCC, nine genetic variants have previously been identified to increase the risk of BCC. The nine SNPs were genotyped by Taqman allelic discrimination in 125 individuals with Gorlin syndrome. Kaplan-Meier survival curves and Cox proportional-Hazard regression analysis were applied to determine the association between genotypes and age of first BCC in individuals with Gorlin syndrome. The p.(Arg151Cys) variant in MC1R (rs1805007) was associated with an earlier median age of onset of BCC of 27 years (95% CI: 20-34) compared with 34 years (95% CI: 30-40) for wild-type individuals (hazard ratio (HR)=1.64, 95% CI: 1.04-2.58, P=0.034). The risk allele of the variant at the chromosome 5p15 locus encompassing TERT-CLPTM1L (rs401681) was also associated with an earlier median onset of BCC, 31 years (95% CI: 28-37) compared with 41 years (95% CI: 32-48, HR=1.44, 95% CI: 1.08-1.93, P=0.014). In individuals with a risk allele at either rs1805007 or rs401681 the median time to BCC was 31 years of age (95% CI: 28-34) compared with 44 years of age (95% CI: 38-53) in wild-type individuals (HR=2.48, 95% CI: 1.47-4.17, P=0.0002). Our findings may have implications for future personalized risk estimates and BCC screening strategies in individuals with Gorlin syndrome.


Subject(s)
Basal Cell Nevus Syndrome/epidemiology , Basal Cell Nevus Syndrome/genetics , Carcinoma, Basal Cell/epidemiology , Carcinoma, Basal Cell/genetics , Genetic Variation , Adolescent , Adult , Age of Onset , Aged , Aged, 80 and over , Alleles , Basal Cell Nevus Syndrome/mortality , Child , Child, Preschool , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Patient Outcome Assessment , Polymorphism, Single Nucleotide , Young Adult
9.
Fam Cancer ; 13(3): 477-80, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24659465

ABSTRACT

Gorlin syndrome is an autosomal dominant disorder characterized by multiple early-onset basal cell carcinoma, odontogenic keratocysts and skeletal abnormalities. It is caused by heterozygous mutations in the tumour suppressor PTCH1. Routine clinical genetic testing, by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to confirm a clinical diagnosis of Gorlin syndrome, identifies a mutation in 60-90 % of cases. We undertook RNA analysis on lymphocytes from ten individuals diagnosed with Gorlin syndrome, but without known PTCH1 mutations by exonic sequencing or MLPA. Two altered PTCH1 transcripts were identified. Genomic DNA sequence analysis identified an intron 7 mutation c.1068-10T>A, which created a strong cryptic splice acceptor site, leading to an intronic insertion of eight bases; this is predicted to create a frameshift p.(His358Alafs*12). Secondly, a deep intronic mutation c.2561-2057A>G caused an inframe insertion of 78 intronic bases in the cDNA transcript, leading to a premature stop codon p.(Gly854fs*3). The mutations are predicted to cause loss of function of PTCH1, consistent with its tumour suppressor function. The findings indicate the importance of RNA analysis to detect intronic mutations in PTCH1 not identified by routine screening techniques.


Subject(s)
Basal Cell Nevus Syndrome/genetics , Receptors, Cell Surface/genetics , Base Sequence , DNA Mutational Analysis , Female , Humans , Introns , Male , Multiplex Polymerase Chain Reaction , Mutation , Patched Receptors , Patched-1 Receptor , RNA Splice Sites/genetics , RNA Splicing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL