Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Ther ; 31(9): 2651-2661, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37394797

ABSTRACT

Mutant Z alpha-1 antitrypsin (ATZ) accumulates in globules in the liver and is the prototype of proteotoxic hepatic disease. Therapeutic strategies aiming at clearance of polymeric ATZ are needed. Transient receptor potential mucolipin-1 (TRPML1) is a lysosomal Ca2+ channel that maintains lysosomal homeostasis. In this study, we show that by increasing lysosomal exocytosis, TRPML1 gene transfer or small-molecule-mediated activation of TRPML1 reduces hepatic ATZ globules and fibrosis in PiZ transgenic mice that express the human ATZ. ATZ globule clearance induced by TRPML1 occurred without increase in autophagy or nuclear translocation of TFEB. Our results show that targeting TRPML1 and lysosomal exocytosis is a novel approach for treatment of the liver disease due to ATZ and potentially other diseases due to proteotoxic liver storage.


Subject(s)
Liver Diseases , Transient Receptor Potential Channels , alpha 1-Antitrypsin , Animals , Humans , Mice , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , Liver Diseases/metabolism , Lysosomes/metabolism , Mice, Transgenic , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
2.
J Inherit Metab Dis ; 46(2): 335-347, 2023 03.
Article in English | MEDLINE | ID: mdl-36433920

ABSTRACT

Multiple sulfatase deficiency (MSD) is an ultrarare lysosomal storage disorder due to deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the enzyme responsible for the post-translational modification and activation of all sulfatases. Most MSD patients carry hypomorph SUMF1 variants resulting in variable degrees of residual sulfatase activities. In contrast, Sumf1 null mice with complete deficiency in all sulfatase enzyme activities, have very short lifespan with significant pre-wean lethality, owing to a challenging preclinical model. To overcome this limitation, we genetically engineered and characterized in mice two commonly identified patient-based SUMF1 pathogenic variants, namely p.Ser153Pro and p.Ala277Val. These pathogenic missense variants correspond to variants detected in patients with attenuated MSD presenting with partial-enzyme deficiency and relatively less severe disease. These novel MSD mouse models have a longer lifespan and show biochemical and pathological abnormalities observed in humans. In conclusion, mice harboring the p.Ser153Pro or the p.Ala277Val variant mimic the attenuated MSD and are attractive preclinical models for investigation of pathogenesis and treatments for MSD.


Subject(s)
Lysosomal Storage Diseases , Multiple Sulfatase Deficiency Disease , Humans , Animals , Mice , Multiple Sulfatase Deficiency Disease/genetics , Mutation , Sulfatases , Mutation, Missense , Oxidoreductases Acting on Sulfur Group Donors/genetics
3.
Mol Ther ; 30(4): 1432-1450, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35121108

ABSTRACT

Mucopolysaccharidosis type IIIA (MPS-IIIA) is an autosomal recessive disorder caused by mutations in SGSH involved in the degradation of heparan sulfate. MPS-IIIA presents severe neurological symptoms such as progressive developmental delay and cognitive decline, for which there is currently no treatment. Brain targeting represents the main challenge for therapeutics to treat MPS-IIIA, and the development of small-molecule-based treatments able to reach the CNS could be a relevant advance for therapy. Using cell-based high content imaging to survey clinically approved drugs in MPS-IIIA cells, we identified fluoxetine, a selective serotonin reuptake inhibitor. Fluoxetine increases lysosomal and autophagic functions via TFEB activation through a RagC-dependent mechanism. Mechanistically, fluoxetine increases lysosomal exocytosis in mouse embryonic fibroblasts from MPS-IIIA mice, suggesting that this process may be responsible for heparan sulfate clearance. In vivo, fluoxetine ameliorates somatic and brain pathology in a mouse model of MPS-IIIA by decreasing the accumulation of glycosaminoglycans and aggregated autophagic substrates, reducing inflammation, and slowing down cognitive deterioration. We repurposed fluoxetine for potential therapeutics to treat human MPS-IIIA disease.


Subject(s)
Mucopolysaccharidosis III , Animals , Disease Models, Animal , Fibroblasts/metabolism , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Heparitin Sulfate/metabolism , Hydrolases/genetics , Mice , Mucopolysaccharidosis III/drug therapy , Mucopolysaccharidosis III/genetics
4.
Mol Ther ; 28(4): 1167-1176, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32087148

ABSTRACT

Lysosomal storage diseases (LSDs) are inherited disorders caused by lysosomal deficiencies and characterized by dysfunction of the autophagy-lysosomal pathway (ALP) often associated with neurodegeneration. No cure is currently available to treat neuropathology in LSDs. By studying a mouse model of mucopolysaccharidosis (MPS) type IIIA, one of the most common and severe forms of LSDs, we found that multiple amyloid proteins including α-synuclein, prion protein (PrP), Tau, and amyloid ß progressively aggregate in the brain. The amyloid deposits mostly build up in neuronal cell bodies concomitantly with neurodegeneration. Treating MPS-IIIA mice with CLR01, a "molecular tweezer" that acts as a broad-spectrum inhibitor of amyloid protein self-assembly reduced lysosomal enlargement and re-activates autophagy flux. Restoration of the ALP was associated with reduced neuroinflammation and amelioration of memory deficits. Together, these data provide evidence that brain deposition of amyloid proteins plays a gain of neurotoxic function in a severe LSD by affecting the ALP and identify CLR01 as new potent drug candidate for MPS-IIIA and likely for other LSDs.


Subject(s)
Autophagy/drug effects , Bridged-Ring Compounds/administration & dosage , Mucopolysaccharidosis III/drug therapy , Neurodegenerative Diseases/drug therapy , Organophosphates/administration & dosage , Amyloid/antagonists & inhibitors , Amyloid/metabolism , Animals , Brain/metabolism , Bridged-Ring Compounds/pharmacology , Cell Body/metabolism , Disease Models, Animal , Male , Mice , Mucopolysaccharidosis III/complications , Mucopolysaccharidosis III/metabolism , Neurodegenerative Diseases/etiology , Organophosphates/pharmacology , Treatment Outcome
6.
Mol Ther ; 24(2): 276-286, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26639405

ABSTRACT

Cerebrospinal fluid administration of recombinant adeno-associated viral (rAAV) vectors has been demonstrated to be effective in delivering therapeutic genes to the central nervous system (CNS) in different disease animal models. However, a quantitative and qualitative analysis of transduction patterns of the most promising rAAV serotypes for brain targeting in large animal models is missing. Here, we characterize distribution, transduction efficiency, and cellular targeting of rAAV serotypes 1, 2, 5, 7, 9, rh.10, rh.39, and rh.43 delivered into the cisterna magna of wild-type pigs. rAAV9 showed the highest transduction efficiency and the widest distribution capability among the vectors tested. Moreover, rAAV9 robustly transduced both glia and neurons, including the motor neurons of the spinal cord. Relevant cell transduction specificity of the glia was observed after rAAV1 and rAAV7 delivery. rAAV7 also displayed a specific tropism to Purkinje cells. Evaluation of biochemical and hematological markers suggested that all rAAV serotypes tested were well tolerated. This study provides a comprehensive CNS transduction map in a useful preclinical large animal model enabling the selection of potentially clinically transferable rAAV serotypes based on disease specificity. Therefore, our data are instrumental for the clinical evaluation of these rAAV vectors in human neurodegenerative diseases.


Subject(s)
Central Nervous System/metabolism , Dependovirus/genetics , Genetic Vectors/administration & dosage , Genetic Vectors/cerebrospinal fluid , Green Fluorescent Proteins/metabolism , Animals , Dependovirus/immunology , Gene Transfer Techniques , Green Fluorescent Proteins/genetics , Humans , Organ Specificity , Serogroup , Swine , Transduction, Genetic , Transgenes
7.
Mol Ther Methods Clin Dev ; 15: 333-342, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31788497

ABSTRACT

Mucopolysaccharidosis type IIIA (MPS-IIIA) is a lysosomal storage disorder (LSD) caused by inherited defect of sulfamidase, a lysosomal sulfatase. MPS-IIIA is one of the most common and severe forms of LSDs with CNS involvement. Presently there is no cure. Here we have developed a new gene delivery approach for the treatment of MPS-IIIA based on the use of a modified version of sulfamidase expression cassette. This cassette encodes both a chimeric sulfamidase containing an alternative signal peptide (sp) to improve enzyme secretion and sulfatase-modifying factor 1 (SUMF1) to increase sulfamidase post-translational activation rate. We demonstrate that improved secretion and increased activation of sulfamidase act synergistically to enhance enzyme biodistribution in wild-type (WT) pigs upon intrathecal adeno-associated virus serotype 9 (AAV9)-mediated gene delivery. Translating such gene delivery strategy to a mouse model of MPS-IIIA results in a rescue of brain pathology, including memory deficit, as well as improvement in somatic tissues. These data may pave the way for developing effective gene delivery replacement protocols for the treatment of MPS-IIIA patients.

8.
EMBO Mol Med ; 9(1): 112-132, 2017 01.
Article in English | MEDLINE | ID: mdl-27881461

ABSTRACT

Lysosomal storage disorders (LSDs) are inherited diseases characterized by lysosomal dysfunction and often showing a neurodegenerative course. There is no cure to treat the central nervous system in LSDs. Moreover, the mechanisms driving neuronal degeneration in these pathological conditions remain largely unknown. By studying mouse models of LSDs, we found that neurodegeneration develops progressively with profound alterations in presynaptic structure and function. In these models, impaired lysosomal activity causes massive perikaryal accumulation of insoluble α-synuclein and increased proteasomal degradation of cysteine string protein α (CSPα). As a result, the availability of both α-synuclein and CSPα at nerve terminals strongly decreases, thus inhibiting soluble NSF attachment receptor (SNARE) complex assembly and synaptic vesicle recycling. Aberrant presynaptic SNARE phenotype is recapitulated in mice with genetic ablation of one allele of both CSPα and α-synuclein. The overexpression of CSPα in the brain of a mouse model of mucopolysaccharidosis type IIIA, a severe form of LSD, efficiently re-established SNARE complex assembly, thereby ameliorating presynaptic function, attenuating neurodegenerative signs, and prolonging survival. Our data show that neurodegenerative processes associated with lysosomal dysfunction may be presynaptically initiated by a concomitant reduction in α-synuclein and CSPα levels at nerve terminals. They also demonstrate that neurodegeneration in LSDs can be slowed down by re-establishing presynaptic functions, thus identifying synapse maintenance as a novel potentially druggable target for brain treatment in LSDs.


Subject(s)
HSP40 Heat-Shock Proteins/analysis , Lysosomal Storage Diseases/pathology , Membrane Proteins/analysis , Neurodegenerative Diseases/pathology , Presynaptic Terminals/pathology , alpha-Synuclein/analysis , Animals , Disease Models, Animal , Mice , Proteolysis , SNARE Proteins/metabolism , Synaptic Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL