Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Phytopathology ; 114(2): 464-473, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37565813

ABSTRACT

Frequent fungicide applications are required to manage grapevine powdery mildew (Erysiphe necator). However, this practice is costly and has led to widespread fungicide resistance. A method of monitoring in-field fungicide efficacy could help growers maximize spray-interval length, thereby reducing costs and the rate of fungicide resistance emergence. The goal of this study was to evaluate if hyperspectral sensing in the visible to shortwave infrared range (400 to 2,400 nm) can quantify foliar fungicide efficacy on grape leaves. Commercial formulations of metrafenone, Bacillus mycoides isolate J (BmJ), and sulfur were applied on Chardonnay grapevines in vineyard or greenhouse settings. Foliar reflectance was measured with handheld hyperspectral spectroradiometers at multiple days post-application. Fungicide efficacy was estimated as a proxy for fungicide residue and disease control measured with the Blackbird microscopy imaging robot. Treatments could be differentiated from the untreated control with an accuracy of 73.06% for metrafenone, 67.76% for BmJ, and 94.10% for sulfur. The change in spectral reflectance was moderately correlated with the cube root of the area under the disease progress curve for metrafenone- and sulfur-treated samples (R2 = 0.38 and 0.36, respectively) and with sulfur residue (R2 = 0.42). BmJ treatment impacted foliar physiology by enhancing the leaf mass/area and reducing the nitrogen and total phenolic content as estimated from spectral reflectance. The results suggest that hyperspectral sensing can be used to monitor in-situ fungicide efficacy, and the prediction accuracy depends on the fungicide and the time point measured. The ability to monitor in-situ fungicide efficacy could facilitate more strategic fungicide applications and promote sustainable grapevine protection. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Bacillus , Benzophenones , Fungicides, Industrial , Fungicides, Industrial/pharmacology , Plant Diseases/prevention & control , Sulfur
2.
Phytopathology ; 111(11): 1972-1982, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33829855

ABSTRACT

Hop powdery mildew, caused by the ascomycete fungus Podosphaera macularis, is a consistent threat to sustainable hop production. The pathogen utilizes two reproductive strategies for overwintering and perennation: (i) asexual vegetative hyphae on dormant buds that emerge the following season as infected shoots; and (ii) sexual ascocarps (chasmothecia), which are discharged during spring rain events. We demonstrate that P. macularis chasmothecia, in the absence of any asexual P. macularis growth forms, are a viable overwintering source capable of causing early season infection two to three orders of magnitude greater than that reported for perennation via asexual growth. Two epidemiological models were defined that describe (i) temperature-driven maturation of P. macularis chasmothecia; and (ii) ascosporic discharge in response to duration of leaf wetness and prevailing temperatures. P. macularis ascospores were confirmed to be infectious at temperatures ranging from 5 to 20°C. The organism's chasmothecia were also found to adhere tightly to the host tissue on which they formed, suggesting that these structures likely overwinter wherever hop tissue senesces within a hop yard. These observations suggest that existing early season disease management practices are especially crucial to controlling hop powdery mildew in the presence of P. macularis chasmothecia. Furthermore, these insights provide a baseline for the validation of weather-driven models describing maturation and release of P. macularis ascospores, models that can eventually be incorporated into hop disease management programs.


Subject(s)
Ascomycota , Humulus , Plant Diseases/microbiology , Ascomycota/pathogenicity , Humulus/microbiology
3.
Phytopathology ; 111(1): 194-203, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33044132

ABSTRACT

Obligately biotrophic plant pathogens pose challenges in population genetic studies due to their genomic complexities and elaborate culturing requirements with limited biomass. Hop powdery mildew (Podosphaera macularis) is an obligately biotrophic ascomycete that threatens sustainable hop production. P. macularis populations of the Pacific Northwest (PNW) United States differ from those of the Midwest and Northeastern United States, lacking one of two mating types needed for sexual recombination and harboring two strains that are differentially aggressive on the cultivar Cascade and able to overcome the Humulus lupulus R-gene R6 (V6), respectively. To develop a high-throughput marker platform for tracking the flow of genotypes across the United States and internationally, we used an existing transcriptome of diverse P. macularis isolates to design a multiplex of 54 amplicon sequencing markers, validated across a panel of 391 U.S. samples and 123 international samples. The results suggest that P. macularis from U.S. commercial hop yards form one population closely related to P. macularis of the United Kingdom, while P. macularis from U.S. feral hop locations grouped with P. macularis of Eastern Europe. Included in this multiplex was a marker that successfully tracked V6-virulence in 65 of 66 samples with a confirmed V6-phenotype. A new qPCR assay for high-throughput genotyping of P. macularis mating type generated the highest resolution distribution map of P. macularis mating type to date. Together, these genotyping strategies enable the high-throughput and inexpensive tracking of pathogen spread among geographical regions from single-colony samples and provide a roadmap to develop markers for other obligate biotrophs.


Subject(s)
Ascomycota , Humulus , Ascomycota/genetics , New England , Northwestern United States , Plant Diseases , Transcriptome , United Kingdom
4.
PLoS One ; 11(3): e0149560, 2016.
Article in English | MEDLINE | ID: mdl-26974672

ABSTRACT

In winegrapes (Vitis spp.), fruit quality traits such as berry color, total soluble solids content (SS), malic acid content (MA), and yeast assimilable nitrogen (YAN) affect fermentation or wine quality, and are important traits in selecting new hybrid winegrape cultivars. Given the high genetic diversity and heterozygosity of Vitis species and their tendency to exhibit inbreeding depression, linkage map construction and quantitative trait locus (QTL) mapping has relied on F1 families with the use of simple sequence repeat (SSR) and other markers. This study presents the construction of a genetic map by single nucleotide polymorphisms identified through genotyping-by-sequencing (GBS) technology in an F2 mapping family of 424 progeny derived from a cross between the wild species V. riparia Michx. and the interspecific hybrid winegrape cultivar, 'Seyval'. The resulting map has 1449 markers spanning 2424 cM in genetic length across 19 linkage groups, covering 95% of the genome with an average distance between markers of 1.67 cM. Compared to an SSR map previously developed for this F2 family, these results represent an improved map covering a greater portion of the genome with higher marker density. The accuracy of the map was validated using the well-studied trait berry color. QTL affecting YAN, MA and SS related traits were detected. A joint MA and SS QTL spans a region with candidate genes involved in the malate metabolism pathway. We present an analytical pipeline for calling intercross GBS markers and a high-density linkage map for a large F2 family of the highly heterozygous Vitis genus. This study serves as a model for further genetic investigations of the molecular basis of additional unique characters of North American hybrid wine cultivars and to enhance the breeding process by marker-assisted selection. The GBS protocols for identifying intercross markers developed in this study can be adapted for other heterozygous species.


Subject(s)
Chimera/genetics , Fruit/genetics , Heterozygote , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Vitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL