Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Biochem Biophys Res Commun ; 725: 150258, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38897041

ABSTRACT

OBJECTIVE: Long-term exposure to arsenic has been linked to several illnesses, including hypertension, diabetes, hepatic and renal diseases and cardiovascular malfunction. The aim of the current investigation was to determine whether zingerone (ZN) could shield rats against the hepatotoxicity that sodium arsenite (SA) causes. METHODS: The following five groups of thirty-five male Sprague Dawley rats were created: I) Control; received normal saline, II) ZN; received ZN, III) SA; received SA, IV) SA + ZN 25; received 10 mg/kg body weight SA + 25 mg/kg body weight ZN, and V) SA + ZN 50; received 10 mg/kg body weight SA + 50 mg/kg body weight ZN. The experiment lasted 14 days, and the rats were sacrificed on the 15th day. While oxidative stress parameters were studied by spectrophotometric method, apoptosis, inflammation and endoplasmic reticulum stress parameters were measured by RT-PCR method. RESULTS: The SA disrupted the histological architecture and integrity of the liver and enhanced oxidative damage by lowering antioxidant enzyme activity, such as those of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH) level and increasing malondialdehyde (MDA) level in the liver tissue. Additionally, SA increased the mRNA transcript levels of Bcl2 associated x (Bax), caspases (-3, -6, -9), apoptotic protease-activating factor 1 (Apaf-1), p53, tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), c-Jun NH2-terminal kinase (JNK), mitogen-activated protein kinase 14 (MAPK14), MAPK15, receptor for advanced glycation endproducts (RAGE) and nod-like receptor family pyrin domain-containing 3 (NLRP3) in the liver tissue. Also produced endoplasmic reticulum stress by raising the mRNA transcript levels of activating transcription factor 6 (ATF-6), protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and glucose-regulated protein 78 (GRP-78). These factors together led to inflammation, apoptosis, and endoplasmic reticulum stress. On the other hand, liver tissue treated with ZN at doses of 25 and 50 mg/kg showed significant improvement in oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress. CONCLUSIONS: Overall, the study's data suggest that administering ZN may be able to lessen the liver damage caused by SA toxicity.

2.
J Biochem Mol Toxicol ; 38(2): e23655, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38348715

ABSTRACT

Bisphenol A (BPA) is a synthetic environmental pollutant widely used in industry, as well as is an endocrine disrupting chemicals and has a toxic effects on heart tissue. The aim of this study is to reveal the cardioprotective effects of 18ß-glycyrretinic acid (GA) against BPA-induced cardiotoxicity in rats. In this study, 40 male rats were used and five different groups (each group includes eight rats) were formed. The rats were applied BPA (250 mg/kg b.w.) alone or with GA (50 and 100 mg/kg b.w.) for 14 days. Rats were killed on Day 15 and heart tissues were taken for analysis. GA treatment decreased serum lactate dehydrogenase and creatine kinase MB levels, reducing BPA-induced heart damage. GA treatment showed ameliorative effects against lipid peroxidation and oxidative stress caused by BPA by increasing the antioxidant enzyme activities (glutathione peroxidase, superoxide dismutase, and catalase) and GSH level of the heart tissue and decreasing the MDA level. In addition, GA showed antiapoptotic effect by increasing Bcl-2, procaspase-3, and -9 protein expression levels and decreasing Bax, cytochrome c, and P53 protein levels in heart tissue. As a result, it was found that GA has cardioprotective effects on heart tissue by exhibiting antioxidant and antiapoptotic effects against heart damage caused by BPA, an environmental pollutant. Thus, it was supported that GA could be a potential cardioprotective agent.


Subject(s)
Benzhydryl Compounds , Environmental Pollutants , Glycyrrhetinic Acid/analogs & derivatives , Heart Injuries , Phenols , Rats , Male , Animals , Antioxidants/pharmacology , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Oxidative Stress , Environmental Pollutants/pharmacology
3.
Metab Brain Dis ; 39(4): 509-522, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38108941

ABSTRACT

Chlorpyrifos (CPF), considered one of the most potent organophosphates, causes a variety of human disorders including neurotoxicity. The current study was designed to evaluate the efficacy of hesperidin (HSP) in ameliorating CPF-induced neurotoxicity in rats. In the study, rats were treated with HSP (orally, 50 and 100 mg/kg) 30 min after giving CPF (orally, 6.75 mg/kg) for 28 consecutive days. Molecular, biochemical, and histological methods were used to investigate cholinergic enzymes, oxidative stress, inflammation, and apoptosis in the brain tissue. CPF intoxication resulted in inhibition of acetylcholinesterase (AChE) and butrylcholinesterase (BChE) enzymes, reduced antioxidant status [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH)], and elevation of malondialdehyde (MDA) levels and carbonic anhydrase (CA) activities. CPF increased histopathological changes and immunohistochemical expressions of 8-OHdG in brain tissue. CPF also increased levels of glial fibrillary acidic protein (GFAP) and nuclear factor kappa B (NF-κB) while decreased levels of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α). Furthermore, CPF increased mRNA transcript levels of caspase-3, Bax, PARP-1, and VEGF, which are associated with apoptosis and endothelial damage in rat brain tissues. HSP treatment was found to protect brain tissue by reducing CPF-induced neurotoxicity. Overall, this study supports that HSP can be used to reduce CPF-induced neurotoxicity.


Subject(s)
Apoptosis , Chlorpyrifos , Hesperidin , Neurotoxicity Syndromes , Oxidative Stress , Animals , Oxidative Stress/drug effects , Hesperidin/pharmacology , Hesperidin/therapeutic use , Chlorpyrifos/toxicity , Apoptosis/drug effects , Rats , Male , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Rats, Wistar , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/chemically induced , Insecticides/toxicity , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cholinesterase Inhibitors/pharmacology
4.
Arch Pharm (Weinheim) ; 357(2): e2300497, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37972283

ABSTRACT

In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.


Subject(s)
Flavones , Methotrexate , Thioredoxin-Disulfide Reductase , Rats , Animals , Methotrexate/pharmacology , Thioredoxin-Disulfide Reductase/metabolism , Glutathione Transferase/metabolism , Pentose Phosphate Pathway , Structure-Activity Relationship , Glutathione Reductase/metabolism , Body Weight
5.
Mol Biol Rep ; 50(1): 433-442, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36344803

ABSTRACT

BACKGROUND: Diclofenac (DF) is a non-steroidal anti-inflammatory drug (NSAID) generally prescribed for the treatment of pain. In spite of the widespread use of DF, hepatotoxicity has been reported after its administration. The current study discloses new evidence as regards of the curative effects of chrysin (CHR) on DF-induced hepatotoxicity by regulating oxidative stress, apoptosis, autophagy, and endoplasmic reticulum (ER) stress. METHODS: The animals were separated into five different groups. Group-I was in control. Group-II received CHR-only (50 mg/kg bw, p.o.) on all 5 days. Group-III received DF-only (50 mg/kg bw, i.p.) on 4th and 5th day. Group-IV received DF (50 mg/kg bw) + CHR (25 mg/kg, bw) and group-V received DF (50 mg/kg, bw) + CHR (50 mg/kg, bw) for 5 days. RESULTS: DF injection was associated with increased MDA while reduced GSH level, activities of superoxide dismutase, glutathione peroxidase, and catalase and mRNA levels of HO-1 and Nrf2 in the liver. DF injection caused apoptosis and autophagy in the liver by up-regulating caspase-3, Bax, LC3A, and LC3B levels and down-regulating Bcl-2. DF also caused ER stress by increasing mRNA transcript levels of ATF-6, IRE1, PERK, and GRP78. Additionally, it was observed that DF administration up-regulated MMP2 and MMP9. However, treatment with CHR at a dose of 25 and 50 mg/kg considerably ameliorated oxidative stress, apoptosis, autophagy, and ER stress in liver tissue. CONCLUSION: Overall, the data of this study indicate that liver damage associated with DF toxicity could be ameliorated by CHR administration.


Subject(s)
Chemical and Drug Induced Liver Injury , Diclofenac , Rats , Animals , Diclofenac/toxicity , Oxidative Stress , RNA, Messenger , Chemical and Drug Induced Liver Injury/drug therapy , Endoplasmic Reticulum Stress , Apoptosis , Autophagy
6.
Mol Biol Rep ; 50(4): 3479-3488, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36781607

ABSTRACT

BACKGROUND: Organ toxicity limits the therapeutic efficacy of methotrexate (MTX), an anti-metabolite therapeutic that is frequently used as an anti-cancer and immunosuppressive medicine. Hepatocellular toxicity is among the most severe side effects of long-term MTX use. The present study unveils new confirmations as regards the remedial effects of morin on MTX-induced hepatocellular injury through regulation of oxidative stress, apoptosis and MAPK signaling. METHODS AND RESULTS: Rats were subjected to oral treatment of morin (50 and 100 mg/kg body weight) for 10 days. Hepatotoxicity was induced by single intraperitoneal injection of MTX (20 mg/kg body weight) on the 5th day. MTX related hepatic injury was associated with increased MDA while decreased GSH levels, the activities of endogen antioxidants (glutathione peroxidase, superoxide dismutase and catalase) and mRNA levels of HO-1 and Nrf2 in the hepatic tissue. MTX treatment also resulted in apoptosis in the liver tissue via increasing mRNA transcript levels of Bax, caspase-3, Apaf-1 and downregulation of Bcl-2. Conversely, treatment with morin at different doses (50 and 100 mg/kg) considerably mitigated MTX-induced oxidative stress and apoptosis in the liver tissue. Morin also mitigated MTX-induced increases of ALT, ALP and AST levels, downregulated mRNA expressions of matrix metalloproteinases (MMP-2 and MMP-9), MAPK14 and MAPK15, JNK, Akt2 and FOXO1 genes. CONCLUSION: According to the findings of this study, morin may be a potential way to shield the liver tissue from the oxidative damage and apoptosis.


Subject(s)
Chemical and Drug Induced Liver Injury , Methotrexate , Rats , Animals , Methotrexate/toxicity , Methotrexate/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , NF-E2-Related Factor 2/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Rats, Wistar , Antioxidants/metabolism , Oxidative Stress , Liver/metabolism , Signal Transduction , Flavonoids/pharmacology , Flavonoids/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Body Weight
7.
Phytother Res ; 37(3): 1115-1135, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36562210

ABSTRACT

Caffeic acid phenethyl ester (CAPE), a main active component of propolis and a flavonoid, is one of the natural products that has attracted attention in recent years. CAPE, which has many properties such as anti-cancer, anti-inflammatory, antioxidant, antibacterial and anti-fungal, has shown many pharmacological potentials, including protective effects on multiple organs. Interestingly, molecular docking studies showed the possibility of binding of CAPE with replication enzyme. In addition, it was seen that in order to increase the binding security of the replication enzyme and CAPE, modifications can be made at three sites on the CAPE molecule, which leads to the possibility of the compound working more powerfully and usefully to prevent the proliferation of cancer cells and reduce its rate. Also, it was found that CAPE has an inhibitory effect against the main protease enzyme and may be effective in the treatment of SARS-CoV-2. This review covers in detail the importance of CAPE in alternative medicine, its pharmacological value, its potential as a cancer anti-proliferative agent, its dual role in radioprotection and radiosensitization, and its use against coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 , Phenylethyl Alcohol , Humans , Molecular Docking Simulation , SARS-CoV-2 , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/pharmacology , Caffeic Acids/chemistry , Anti-Inflammatory Agents/pharmacology , Free Radicals
8.
Drug Chem Toxicol ; 46(3): 546-556, 2023 May.
Article in English | MEDLINE | ID: mdl-35450509

ABSTRACT

Favipiravir is a selective RNA polymerase inhibitor and a broad-spectrum antiviral drug, an important agent used in viral infections, including Ebola, Lassa, and COVID-19. This study aims to evaluate the potential toxicological effects of favipiravir administration on rats' liver and kidney tissues. Favipiravir was applied for five and ten days in the present study. During this period, it was aimed to determine possible toxic effects on the liver and kidney. For this purpose, the impact of favipiravir on liver and kidney tissues were examined using histopathologic and biochemical methods. The present study showed that favipiravir administration led to an elevation in the liver and kidney serum enzymes and oxidative and histopathologic damages. Favipiravir administration caused apoptotic cell death (Caspase-3 and Bcl-2), inflammation (NF-κB and IL-6), and a decrease in renal reabsorption (AQP2) levels. In the evaluation of the findings obtained in this study, it was determined that the favipiravir or metabolites caused liver and kidney damages.


Subject(s)
Amides , Antiviral Agents , Kidney , Liver , Pyrazines , Animals , Rats , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , Aquaporin 2 , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Amides/pharmacology , Amides/toxicity , Pyrazines/pharmacology , Pyrazines/toxicity
9.
Mol Biol Rep ; 49(10): 9641-9649, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36057755

ABSTRACT

BACKGROUND: Methotrexate (MT) is a broadly used chemotherapeutic drug however its clinical use is confronted with several forms of toxicities containing testicular damage. The current study assessed the ameliorative effects of morin on MT-induced testicular damage with the investigation of its mechanism and the potential involvement of oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in such protection. METHODS: The animals were divided into 5 distinct groups (7 rats in each group). Group 1 was control group, group 2 received MT-only (20 mg/kg bw), group 3 received orally morin-only (100 mg/kg bw), group 4 received MT (20 mg/kg bw) + morin (50 mg/kg bw) and group 5 received MT (20 mg/kg bw) + morin (100 mg/kg). In this study, morin was administered orally for 10 days, while MT was administered intraperitoneally on the 5th day. RESULTS: MT intoxication was linked with augmented MDA while decreased GSH levels, the enzyme activities of glutathione peroxidase, superoxide dismutase, and catalase and mRNA levels of HO-1 and Nrf2 in the testis tissues. MT injection caused inflammation in the testicular tissue via up-regulation of MAPK14, NFκB, TNF-α and IL-1ß. MT application also caused apoptosis and endoplasmic reticulum stress in the testis tissue via increasing mRNA transcript levels of Bax, caspase-3, PERK, IRE1, ATF-6, GRP78 and down-regulation of Bcl-2. CONCLUSION: Treatment with morin at a dose of 50 and 100 mg/kg considerably mitigated oxidative stress, inflammation, apoptosis and endoplasmic reticulum stress in the testicular tissue indicating that testicular damage related to MT toxicity could be modulated by morin administration.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Testis , Activating Transcription Factor 6 , Animals , Antioxidants/metabolism , Caspase 3/metabolism , Catalase/metabolism , Endoplasmic Reticulum Chaperone BiP , Flavones , Glutathione Peroxidase/metabolism , Inflammation/metabolism , Male , Methotrexate/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , Rats , Signal Transduction , Superoxide Dismutase/metabolism , Testis/metabolism , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
10.
J Biochem Mol Toxicol ; 36(9): e23121, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35670529

ABSTRACT

Oxaliplatin (OXL) is a chemotherapeutic drug used for metastatic and other types of cancer, but it causes peripheral neuropathy as a dose-limiting side effect. Herein, we used the rat model of OXL-induced peripheral neuropathy to demonstrate the protective effects of naringin (NRG) in this neuropathy. In this study, rats were injected with OXL (4 mg/kg, body weight, i.p.) in 5% glucose solution 30 min after oral administration of NRG (50 and 100 mg/kg, body weight) on the 1st, 2nd, 5th, and 6th days. OXL caused sensory and motor neuropathy (as revealed by the hot plate, tail flick, rota-rod, and cold hyperalgesia tests) in the sciatic nerve of rats. Coadministration of oral NRG alleviated OXL-induced sensory and motor neuropathy. Levels of superoxide dismutase, catalase, glutathione peroxidase, nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, nuclear factor-κ B, tumor necrosis factor-α, interleukin-1ß, Bax, Bcl-2, caspase-3, paraoxonase, mitogen-activated protein kinase 14, neuronal nitric oxide synthase (nNOS), acetylcholinesterase, and arginase 2 in the sciatic nerve tissues were assessed by real-time polymerase chain reaction. Moreover, the protein levels of caspase-3, Bax, Bcl-2, intercellular adhesion molecules-1, glial fibrillary acidic protein, and nNOS were examined by Western blot analysis. NRG treatment significantly improved all the above-mentioned parameters and reduced OXL-induced oxidative stress, inflammation, and apoptosis in the sciatic nerve tissue. In conclusion, this study demonstrated that NRG significantly attenuated OXL-induced peripheral neuropathy and might be considered as a new protective agent to prevent the OXL-induced peripheral neuropathy.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Peripheral Nervous System Diseases , Acetylcholinesterase , Animals , Arginase/adverse effects , Aryldialkylphosphatase , Body Weight , Caspase 3 , Catalase/metabolism , Cell Adhesion Molecules , Flavanones , Glial Fibrillary Acidic Protein , Glucose/adverse effects , Glutathione Peroxidase , Heme Oxygenase-1 , Interleukin-1beta , Nitric Oxide Synthase Type I/adverse effects , Oxaliplatin/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Protective Agents , Rats , Superoxide Dismutase , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein
11.
Metab Brain Dis ; 37(6): 1931-1940, 2022 08.
Article in English | MEDLINE | ID: mdl-35699857

ABSTRACT

The exposure to bisphenol A (BPA) is inevitable owing to its common use in the production of polycarbonate plastics. Studies to reduce side effects are gaining importance since BPA causes severe toxicities in important tissues such as testes, lungs, brain, liver and kidney. The current study was planned to study ameliorative effect of 18ß-glycyrrhetinic acid (18ß-GA) on BPA induced neurotoxicity. Fourty Wistar albino rats were divided into five equal groups as follows: I-Control group, II-18ß-GA group (100 mg/kg), III- BPA group (250 mg/kg), IV-250 mg/kg BPA + 50 mg/kg 18ß-GA group, V-250 mg/kg BPA + 100 mg/kg 18ß-GA group. BPA intoxication was associated with increased MDA level while reduced GSH concentration, activities of glutathione peroxidase, superoxide dismutase, and catalase. BPA supplementation caused apoptosis in the brain by up-regulating caspase-3 and Bax levels and down-regulating Bcl-2. BPA also caused endoplasmic reticulum (ER) stress by increasing mRNA transcript levels of PERK, IRE1, ATF-6 and GRP78. Additionally, it was observed that BPA administration activated JAK1/STAT1 signaling pathway and levels of TNF-α, NF-κB, p38 MAPK and JNK in the brain. However, co-treatment with 18ß-GA at a dose of 50 and 100 mg/kg considerably ameliorated oxidative stress, inflammation, apoptosis, ER stress and JAK1/STAT1 signaling pathway in brain tissue. Overall, the data of this study indicate that brain damage associated with BPA toxicity could be ameliorated by 18ß-GA administration.


Subject(s)
Endoplasmic Reticulum Stress , Neuroprotective Agents , Animals , Apoptosis , Benzhydryl Compounds , Glycyrrhetinic Acid/analogs & derivatives , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress , Phenols , Rats , Rats, Wistar , STAT1 Transcription Factor/pharmacology , Signal Transduction
12.
Metab Brain Dis ; 37(4): 1259-1269, 2022 04.
Article in English | MEDLINE | ID: mdl-35316447

ABSTRACT

Cadmium (Cd), is a heavy metal reported to be associated with oxidative stress and inflammation. In this paper, we investigated the possible protective effects of carvacrol against Cd-induced neurotoxicity in rats. Adult male Sprague Dawley rats were treated orally with Cd (25 mg/kg body weight) and with carvacrol (25 and 50 mg/kg body weight) for 7 days. Carvacrol decreased the levels of malondialdehyde (MDA), glial fibrillary acidic protein (GFAP) and monoamine oxidase (MAO), and significantly increased the levels of glutathione (GSH) and activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in brain tissue. Additionally, carvacrol alleviated the in levels of inflammation and apoptosis related proteins involving p38 mitogen-activated protein kinase (p38 MAPK), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), B-cell lymphoma-3 (Bcl-3), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), myeloperoxidase (MPO), prostaglandin E2 (PGE2), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS), cysteine aspartate specific protease-3 (caspase-3) and Bcl-2 associated X protein (Bax) in the Cd-induced neurotoxicity. Carvacrol also decreased the mRNA expression of matrix metalloproteinases (MMP9 and MMP13), as well as 8-hydroxy-2'-deoxyguanosine (8 - OHdG) level, a marker of oxidative DNA damage. Collectively, our findings indicated that carvacrol has a beneficial effect in ameliorating the Cd-induced neurotoxicity in the brain of rats.


Subject(s)
Neuroprotective Agents , Neurotoxicity Syndromes , Animals , Apoptosis , Body Weight , Cadmium/toxicity , Cymenes , Glutathione/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/drug therapy , Oxidative Stress , Rats , Rats, Sprague-Dawley , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Neurochem Res ; 46(2): 379-395, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33201400

ABSTRACT

Paclitaxel (PTX) is an antineoplastic agent commonly used in the treatment of solid tumors and is known to cause dose-limiting peripheral neurotoxicity. This study was performed to evaluate the protective effect of curcumin (CUR) against PTX-induced spinal cord and sciatic nerve injuries in rats. The rats were administered PTX (2 mg/kg, BW) intraperitoneally for the first 5 consecutive days followed by administration of CUR (100 and 200 mg/kg, BW daily in corn oil) orally for 10 days. Our results showed that CUR significantly reduced mRNA expression levels of NF-κB, TNF-α, IL-6, iNOS and GFAP whereas caused an increase in levels of Nrf2, HO-1 and NQO1 in the spinal cord and sciatic nerve of PTX-induced rats. In addition, CUR suppressed the activation of apoptotic and autophagic pathways by increasing Bcl-2 and Bcl-xL, and decreasing p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1 mRNA expression levels. The results showed that CUR also maintained the spinal cord and sciatic nerve histological architecture and integrity by both LFB staining and H&E staining. Immunohistochemical expressions of 8-OHdG, caspase-3 and LC3B in the PTX-induced spinal cord tissue were decreased after administration of CUR. Taken together, our findings demonstrated that CUR has protective effects on PTX-induced spinal cord and sciatic nerve injuries in rats.


Subject(s)
Curcumin/therapeutic use , Neuroprotective Agents/therapeutic use , Sciatic Nerve/drug effects , Sciatic Neuropathy/drug therapy , Spinal Cord Injuries/drug therapy , Animals , Apoptosis/drug effects , Autophagy/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Male , Paclitaxel , Rats, Sprague-Dawley , Sciatic Nerve/pathology , Sciatic Neuropathy/chemically induced , Sciatic Neuropathy/pathology , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord Injuries/chemically induced , Spinal Cord Injuries/pathology
14.
Environ Toxicol ; 36(8): 1600-1617, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33908150

ABSTRACT

In this study, we investigated the effects of hesperidin (HSP) on oxidants/antioxidants status, inflammation, apoptotic, and autophagic activity in hepato-renal toxicity induced by chronic chlorpyrifos (CPF) exposure in rats. We used a total of 35 male albino rats in five groups of seven: control, HSP 100, CPF, CPF + HSP50, and CPF + HSP100. After rats were sacrificed, blood, liver, and kidney samples were collected. Serum levels of aspartate aminotransferases (ALT and AST), alkaline phosphatase (ALP), creatinine, and urea were tested. Then, contents of the superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), glutathione peroxidase (GPx), and glutathione (GSH) were measured to detect the level of oxidative stress in rat liver and renal tissues. We measured inflammatory and autophagy markers of chlorpyrifos induced oxidative stress in the liver and kidney tissues including TNF-α, iNOS, IL-1 ß, COX-2, NF-κB, MAPK14, and Beclin-1 using ELISA. Histopathological findings were also examined followed by immunohistochemical determination of 8-OHdG expression. Real-time PCR (RT-PCR) was used to examine Cas-3, Bax, Bcl-2, PARP-1, and VEGF, which are associated with apoptosis, autophagy, DNA, and endothelial damage, respectively. In addition, PARP-1 activity was supported by western blot and immunofluorescence, VEGF activity was supported by western blot methods. Treatment with HSP reduced the effect of CPF on ALT, AST, ALP, and total proteins, and increased its effect on tissue antioxidants. PARP/VEGF, apoptotic, pro-apoptotic, anti-apoptotic, and autophagic gene expressions were regulated, and Caspase-3 and Bax expressions were decreased; Bcl-2 expression increased in both the liver and kidney samples, and positivity of 8-OHdG and PARP-1 were reduced in the CPF plus HSP-treated group. Overall, the study demonstrates that HSP may reduce the effects of hepato-renal toxicity caused by CPF by regulating oxidative stress, inflammation, apoptosis, autophagy, and PARP/VEGF genes at biochemical, cellular, and molecular levels.


Subject(s)
Chlorpyrifos , Hesperidin , Animals , Antioxidants/metabolism , Apoptosis , Autophagy , Hesperidin/pharmacology , Inflammation/metabolism , Liver , Male , Oxidative Stress , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rats , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism
15.
Mol Biol Rep ; 47(3): 2023-2034, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32030599

ABSTRACT

The purpose of the current study was to examine the neuroprotective effect of rutin against colistin-induced neurotoxicity in rats. Thirty-five male Sprague Dawley rats were randomly divided into 5 groups. The control group (orally received physiological saline), the rutin group (orally administered 100 mg/kg body weight), the colistin group (i.p. administered 15 mg/kg body weight), the Col + Rut 50 group (i.p. administered 15 mg/kg body weight of colistin, and orally received 50 mg/kg body weight of rutin), the Col + Rut 100 group (i.p. administered 15 mg/kg body weight of colistin, and orally received 100 mg/kg body weight of rutin). Administration of colistin increased levels of glial fibrillary acidic protein and brain-derived neurotrophic factor and acetylcholinesterase and butyrylcholinesterase activities while decreasing level of cyclic AMP response element binding protein and extracellular signal regulated kinases 1 and 2 (ERK1/2) expressions. Colistin increased oxidative impairments as evidenced by a decrease in level of nuclear factor erythroid 2-related factor 2 (Nrf-2), glutathione, superoxide dismutase, glutathione peroxidase and catalase activities, and increased malondialdehyde content. Colistin also increased the levels of the apoptotic and inflammatoric parameters such as cysteine aspartate specific protease-3 (caspase-3), p53, B-cell lymphoma-2 (Bcl-2), nuclear factor kappa B (NF-κB), Bcl-2 associated X protein (Bax), tumor necrosis factor-α (TNF-α) and neuronal nitric oxide synthase (nNOS). Rutin treatment restored the brain function by attenuating colistin-induced oxidative stress, apoptosis, inflammation, histopathological and immunohistochemical alteration suggesting that rutin supplementation mitigated colistin-induced neurotoxicity in male rats.


Subject(s)
Apoptosis/drug effects , Brain-Derived Neurotrophic Factor/genetics , Colistin/pharmacology , Cyclic AMP Response Element-Binding Protein/genetics , Inflammation/etiology , Inflammation/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Rutin/pharmacology , Animals , Biomarkers , Brain/metabolism , Brain/pathology , Brain-Derived Neurotrophic Factor/metabolism , Colistin/adverse effects , Cyclic AMP Response Element-Binding Protein/metabolism , Immunohistochemistry , Inflammation/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Rats
16.
Andrologia ; 52(3): e13524, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32022330

ABSTRACT

This study investigated the effects of rutin against reproductive damage caused by toxic mercury in male rats. Thirty-five Sprague Dawley rats were used. Control group was injected with saline for 7 days. The rutin-100 group received 100 mg/kg/b.w. rutin for 7 days. Mercuric chloride (HgCl2 ) group received 1.23 mg/kg/b.w. of HgCl2 for 7 days. Mercury chloride + rutin-50 group received 50 mg/kg/b.w. rutin and HgCl2 1.23 mg/kg/b.w. for 7 days. HgCl2  + rutin-100 group received 100 mg/kg/b.w. rutin and HgCl2 1.23 mg/kg/b.w. for 7 days. It was detected that HgCl2 treatment increased malondialdehyde (MDA) levels, tumour necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) expressions, necrosis and degeneration of spermatogonium, dead and abnormal sperm percentages; tubular walls thinning; and decreased antioxidant enzyme activities and sperm motility. It was determined that rutin application reduced testicular damage caused by HgCl2 . In conclusion, rutin administration may treat HgCl2 toxicity in testes.


Subject(s)
Environmental Pollutants/toxicity , Mercuric Chloride/toxicity , Rutin/administration & dosage , Spermatogonia/drug effects , Testis/drug effects , Animals , Male , Models, Animal , Necrosis/chemically induced , Necrosis/pathology , Oxidative Stress/drug effects , Rats , Sperm Motility/drug effects , Spermatogenesis/drug effects , Spermatogonia/pathology , Testis/pathology
17.
J Biochem Mol Toxicol ; 33(10): e22381, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31454121

ABSTRACT

In this study, it was demonstrated the ameliorative effect of zingerone (ZO) (25 and 50 mg/kg body weight) against vancomycin (VCM) (200 mg/kg body weight) administered to rats on some metabolic enzymes' activities in the lung, liver, kidney, and testis tissues of rats. Forty-two rats were divided into six groups as follows: control, ZO-25, ZO-50, VCM, VCM + ZO-25, and VCM + ZO-50. α-Glycosidase, butyrylcholinesterase, aldose reductase, acetylcholinesterase, paraoxonase-1, and carbonic anhydrase enzyme activities were significantly (P < .05) decreased in VCM group when compared with the control group. ZO, supplied with VCM, significantly activated some of these enzyme in all tissues. The results of this study showed that ZO regulates abnormal increases and decreases in VCM-induced metabolic enzyme activities in all tissues.


Subject(s)
Enzymes/metabolism , Guaiacol/analogs & derivatives , Kidney/drug effects , Liver/drug effects , Lung/drug effects , Testis/drug effects , Vancomycin/pharmacology , Animals , Guaiacol/pharmacology , Kidney/enzymology , Liver/enzymology , Lung/enzymology , Male , Rats , Testis/enzymology
18.
J Biochem Mol Toxicol ; 33(6): e22313, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30801880

ABSTRACT

Chrysin (CH) or 5,7-dihydroxyflavone is a flavonoid present in various plants, bee propolis, and honey. Cyclophosphamide (CYP) is a chemotherapeutic drug, which is extensively used in the treatment of multiple human malignancies. In our study, we aimed to investigate the effects of CYP and CH on some metabolic enzymes including carbonic anhydrase, aldose reductase, paraoxonase-1, α-glycosidase, acetylcholinesterase, and butyrylcholinesterase enzyme activities in the brain, heart, testis, liver, and kidney tissues of rats. Thirty-five adult male Wistar rats were used. The animals were pretreated with CH (25 and 50 mg/kg b.w.) for seven days before administering a single dose of CYP (200 mg/kg b.w.) on the seventh day. In all the tissues, the treatment of CH significantly regulated these enzyme activities in CYP-induced rats. These results showed that CH exhibited an ameliorative effect against CYP-induced brain, heart, liver, testis, and kidney toxicity.


Subject(s)
Cholinergic Antagonists/pharmacology , Cyclophosphamide/toxicity , Flavonoids/pharmacology , Hypoglycemic Agents/pharmacology , Animals , Male , Organ Specificity/drug effects , Rats , Rats, Wistar
19.
J Biochem Mol Toxicol ; 33(10): e22384, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31468665

ABSTRACT

This study aimed to investigate the effect of curcumin (CUR) on doxorubicin (DOX)-induced testicular damage in male rats. Thirty-five adult male Wistar rats were used. Control group was received saline for 7 days. CUR group received CUR for 7 days. DOX group received single dose DOX on the 5th day. DOX+ CUR-100 group received 100 mg/kg/day CUR for 7 days and DOX injection on the 5th day. DOX + CUR-200 group received 200 mg/kg/day CUR for 7 days and DOX injection on the 5th day. DOX treatment decreased in sperm motility rate, live sperm percentages, cellular antioxidants, and increased malondialdehyde (MDA) levels, necrosis, degenerations, and slimming in seminiferous tubules, and DNA damages in testes by inducing oxidative stress. CUR treatment mitigated significantly these side effects when compared with DOX group in a dose-dependent manner. In conclusion, CUR treatment can be used in the mitigation of DOX-induced testicular toxicity.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Curcumin/pharmacology , Doxorubicin/pharmacology , Palliative Care , Testis/drug effects , Animals , Antioxidants/metabolism , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar , Testis/metabolism
20.
Bioorg Chem ; 90: 103096, 2019 09.
Article in English | MEDLINE | ID: mdl-31284100

ABSTRACT

Recently, inhibition effects of enzymes such as acetylcholinesterase (AChE) and carbonic anhydrase (CA) has appeared as a promising approach for pharmacological intervention in a variety of disorders such as epilepsy, Alzheimer's disease and obesity. For this purpose, novel N-substituted rhodanine derivatives (RhAs) were synthesized by a green synthetic approach over one-pot reaction. Following synthesis the novel compounds, RhAs derivatives were tested against AChE and cytosolic carbonic anhydrase I, and II (hCAs I, and II) isoforms. As a result of this study, inhibition constant (Ki) were found in the range of 66.35 ±â€¯8.35 to 141.92 ±â€¯12.63 nM for AChE, 43.55 ±â€¯14.20 to 89.44 ±â€¯24.77 nM for hCA I, and 16.97 ±â€¯1.42 to 64.57 ±â€¯13.27 nM for hCA II, respectively. Binding energies were calculated with docking studies as -5.969, -5.981, and -9.121 kcal/mol for hCA I, hCA II, and AChE, respectively.


Subject(s)
Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Rhodanine/chemistry , Acetylcholinesterase/chemistry , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase II/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL