Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Carbohydr Polym ; 327: 121668, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38171659

ABSTRACT

The great structural and functional diversity supports polysaccharides as favorable candidates for new drug development. Previously we reported that a drug candidate pectin-like natural polysaccharide, RN1 might target galectin-3 (Gal-3) to impede pancreatic cancer cell growth in vivo. However, the quality control of polysaccharide-based drug research faces great challenges due to the heterogeneity. A potential solution is to synthesize structurally identified subfragments of this polysaccharide as alternatives. In this work, we took RN1 as an example, and synthesized five subfragments derived from the putative repeating units of RN1. Among them, pentasaccharide 4 showed an approximative binding affinity to Gal-3 in vitro, as well as an antiproliferative activity against pancreatic BxPC-3 cells comparable to that of RN1. Further, we scaled up pentasaccharide 4 to gram-scale in an efficient synthetic route with a 6.9 % yield from D-galactose. Importantly, pentasaccharide 4 significantly suppressed the growth of pancreatic tumor in vivo. Based on the mechanism complementarity of galactin-3 inhibitor and docetaxel, the combination administration of pentasaccharide 4 and docetaxel afforded better result. The result suggested pentasaccharide 4 was one of the functional structural domains of polysaccharide RN1 and might be a leading compound for anti-pancreatic cancer new drug development.


Subject(s)
Carcinoma , Pancreatic Neoplasms , Humans , Pectins/chemistry , Docetaxel , Polysaccharides/pharmacology , Pancreatic Neoplasms/drug therapy , Oligosaccharides , Galectin 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL