Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(8): 969-982, 2021 08.
Article in English | MEDLINE | ID: mdl-34312548

ABSTRACT

The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4+ intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (SilThPOK). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the SilThPOK to maintain its own long-term expression in CD4 T cells. Disruption of this loop in vivo prevents persistent ThPOK expression, leads to genome-wide changes in chromatin accessibility and derepresses the colonic regulatory T (Treg) cell gene expression signature. This promotes selective differentiation of naive CD4 T cells into GITRloPD-1loCD25lo (Triplelo) Treg cells and conversion to CD4+ IELs in the gut, thereby providing dominant protection from colitis. Hence, the ThPOK autoregulatory loop represents a key mechanism to physiologically control ThPOK expression and T cell differentiation in the gut, with potential therapeutic relevance.


Subject(s)
DNA-Binding Proteins/metabolism , Intraepithelial Lymphocytes/cytology , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Regulatory/cytology , Transcription Factors/metabolism , Animals , Cell Differentiation/immunology , Colitis/immunology , Colitis/prevention & control , DNA-Binding Proteins/genetics , Disease Models, Animal , Female , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Transcription Factors/genetics , Transcription, Genetic/genetics
2.
Nature ; 628(8009): 835-843, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600381

ABSTRACT

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Subject(s)
Lung Injury , Necroptosis , Orthomyxoviridae Infections , Protein Kinase Inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Female , Humans , Male , Mice , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/metabolism , Influenza A virus/classification , Influenza A virus/drug effects , Influenza A virus/immunology , Influenza A virus/pathogenicity , Lung Injury/complications , Lung Injury/pathology , Lung Injury/prevention & control , Lung Injury/virology , Mice, Inbred C57BL , Necroptosis/drug effects , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/prevention & control , Respiratory Distress Syndrome/virology
3.
Mol Cell ; 78(5): 951-959.e6, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32359443

ABSTRACT

BRCA1 promotes the DNA end resection and RAD51 loading steps of homologous recombination (HR). Whether these functions can be uncoupled, and whether mutant proteins retaining partial activity can complement one another, is unclear and could affect the severity of BRCA1-associated Fanconi anemia (FA). Here we generated a Brca1CC mouse with a coiled-coil (CC) domain deletion. Brca1CC/CC mice are born at low frequencies, and post-natal mice have FA-like abnormalities, including bone marrow failure. Intercrossing with Brca1Δ11, which is homozygous lethal, generated Brca1CC/Δ11 mice at Mendelian frequencies that were indistinguishable from Brca1+/+ mice. Brca1CC and Brca1Δ11 proteins were individually responsible for counteracting 53BP1-RIF1-Shieldin activity and promoting RAD51 loading, respectively. Thus, Brca1CC and Brca1Δ11 alleles represent separation-of-function mutations that combine to provide a level of HR sufficient for normal development and hematopoiesis. Because BRCA1 activities can be genetically separated, compound heterozygosity for functional complementary mutations may protect individuals from FA.


Subject(s)
BRCA1 Protein/genetics , Homologous Recombination/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Animals , BRCA1 Protein/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Exons , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mutation , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
4.
EMBO J ; 41(19): e110046, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36039850

ABSTRACT

The role of store-operated Ca2+ entry (SOCE) in melanoma metastasis is highly controversial. To address this, we here examined UV-dependent metastasis, revealing a critical role for SOCE suppression in melanoma progression. UV-induced cholesterol biosynthesis was critical for UV-induced SOCE suppression and subsequent metastasis, although SOCE suppression alone was both necessary and sufficient for metastasis to occur. Further, SOCE suppression was responsible for UV-dependent differences in gene expression associated with both increased invasion and reduced glucose metabolism. Functional analyses further established that increased glucose uptake leads to a metabolic shift towards biosynthetic pathways critical for melanoma metastasis. Finally, examination of fresh surgically isolated human melanoma explants revealed cholesterol biosynthesis-dependent reduced SOCE. Invasiveness could be reversed with either cholesterol biosynthesis inhibitors or pharmacological SOCE potentiation. Collectively, we provide evidence that, contrary to current thinking, Ca2+ signals can block invasive behavior, and suppression of these signals promotes invasion and metastasis.


Subject(s)
Calcium Signaling , Melanoma , Calcium/metabolism , Calcium Channels/metabolism , Cholesterol , Glucose , Humans , Melanoma/genetics , Melanoma/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism
5.
Blood ; 142(15): 1297-1311, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37339580

ABSTRACT

Anaplastic large cell lymphoma (ALCL), a subgroup of mature T-cell neoplasms with an aggressive clinical course, is characterized by elevated expression of CD30 and anaplastic cytology. To achieve a comprehensive understanding of the molecular characteristics of ALCL pathology and to identify therapeutic vulnerabilities, we applied genome-wide CRISPR library screenings to both anaplastic lymphoma kinase positive (ALK+) and primary cutaneous (pC) ALK- ALCLs and identified an unexpected role of the interleukin-1R (IL-1R) inflammatory pathway in supporting the viability of pC ALK- ALCL. Importantly, this pathway is activated by IL-1α in an autocrine manner, which is essential for the induction and maintenance of protumorigenic inflammatory responses in pC-ALCL cell lines and primary cases. Hyperactivation of the IL-1R pathway is promoted by the A20 loss-of-function mutation in the pC-ALCL lines we analyze and is regulated by the nonproteolytic protein ubiquitination network. Furthermore, the IL-1R pathway promotes JAK-STAT3 signaling activation in ALCLs lacking STAT3 gain-of-function mutation or ALK translocation and enhances the sensitivity of JAK inhibitors in these tumors in vitro and in vivo. Finally, the JAK2/IRAK1 dual inhibitor, pacritinib, exhibited strong activities against pC ALK- ALCL, where the IL-1R pathway is hyperactivated in the cell line and xenograft mouse model. Thus, our studies revealed critical insights into the essential roles of the IL-1R pathway in pC-ALCL and provided opportunities for developing novel therapeutic strategies.


Subject(s)
Lymphoma, Large-Cell, Anaplastic , Lymphoma, Primary Cutaneous Anaplastic Large Cell , Skin Neoplasms , Humans , Animals , Mice , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/pathology , Receptor Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase/genetics , Interleukins/metabolism
6.
Gastroenterology ; 164(6): 921-936.e1, 2023 05.
Article in English | MEDLINE | ID: mdl-36764492

ABSTRACT

BACKGROUND & AIMS: Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS: We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS: There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS: Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.


Subject(s)
Adenocarcinoma , Adenoma , Colonic Neoplasms , Colorectal Neoplasms , Animals , Humans , Mice , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenoma/genetics , Adenoma/pathology , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , CpG Islands/genetics , DNA Methylation , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Mixed Function Oxygenases/genetics , Phenotype , Proto-Oncogene Proteins/genetics
7.
Blood ; 140(4): 359-373, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35436326

ABSTRACT

Although Ras/mitogen-activated protein kinase (MAPK) signaling is activated in most human cancers, attempts to target this pathway using kinase-active site inhibitors have not typically led to durable clinical benefit. To address this shortcoming, we sought to test the feasibility of an alternative targeting strategy, focused on the ERK2 substrate binding domains, D and DEF binding pocket (DBP). Disabling the ERK2-DBP domain in mice caused baseline erythrocytosis. Consequently, we investigated the role of the ERK2-D and -DBP domains in disease, using a JAK2-dependent model of polycythemia vera (PV). Of note, inactivation of the ERK2-DBP domain promoted the progression of disease from PV to myelofibrosis, suggesting that the ERK2-DBP domain normally opposes progression. ERK2-DBP inactivation also prevented oncogenic JAK2 kinase (JAK2V617F) from promoting oncogene-induced senescence in vitro. The ERK2-DBP mutation attenuated JAK2-mediated oncogene-induced senescence by preventing the physical interaction of ERK2 with the transcription factor Egr1. Because inactivation of the ERK2-DBP created a functional ERK2 kinase limited to binding substrates through its D domain, these data suggested that the D domain substrates were responsible for promoting oncogene-induced progenitor growth and tumor progression and that pharmacologic targeting of the ERK2-D domain may attenuate cancer cell growth. Indeed, pharmacologic agents targeting the ERK2-D domain were effective in attenuating the growth of JAK2-dependent myeloproliferative neoplasm cell lines. Taken together, these data indicate that the ERK-D and -DBP domains can play distinct roles in the progression of neoplasms and that the D domain has the potential to be a potent therapeutic target in Ras/MAPK-dependent cancers.


Subject(s)
Janus Kinase 2 , Polycythemia Vera , Animals , Cell Line , Humans , Janus Kinase 2/genetics , MAP Kinase Signaling System , Mice , Mitogen-Activated Protein Kinases , Phosphorylation , Signal Transduction
8.
Genes Dev ; 30(8): 918-30, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27034505

ABSTRACT

A nonsynonymous single-nucleotide polymorphism at codon 47 in TP53 exists in African-descent populations (P47S, rs1800371; referred to here as S47). Here we report that, in human cell lines and a mouse model, the S47 variant exhibits a modest decrease in apoptosis in response to most genotoxic stresses compared with wild-type p53 but exhibits a significant defect in cell death induced by cisplatin. We show that, compared with wild-type p53, S47 has nearly indistinguishable transcriptional function but shows impaired ability to transactivate a subset of p53 target genes, including two involved in metabolism:Gls2(glutaminase 2) and Sco2 We also show that human and mouse cells expressing the S47 variant are markedly resistant to cell death by agents that induce ferroptosis (iron-mediated nonapoptotic cell death). We show that mice expressing S47 in homozygous or heterozygous form are susceptible to spontaneous cancers of diverse histological types. Our data suggest that the S47 variant may contribute to increased cancer risk in individuals of African descent, and our findings highlight the need to assess the contribution of this variant to cancer risk in these populations. These data also confirm the potential relevance of metabolism and ferroptosis to tumor suppression by p53.


Subject(s)
Genes, p53/genetics , Polymorphism, Single Nucleotide , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Black People/genetics , Carcinoma, Hepatocellular/genetics , Cell Death/drug effects , Cell Death/genetics , Cell Line , Cisplatin/pharmacology , Codon/chemistry , Codon/genetics , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Neoplasms/genetics , Protein Binding/genetics , Risk Factors , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
9.
Carcinogenesis ; 44(2): 182-195, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37014121

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive forms of human malignancy, often displaying limited therapeutic response. Here, we examine the non-steroidal anti-inflammatory drug diclofenac (DCF) as a novel therapeutic agent in ESCC using complementary in vitro and in vivo models. DCF selectively reduced viability of human ESCC cell lines TE11, KYSE150, and KYSE410 as compared with normal primary or immortalized esophageal keratinocytes. Apoptosis and altered cell cycle profiles were documented in DCF-treated TE11 and KYSE 150. In DCF-treated TE11, RNA-Sequencing identified differentially expressed genes and Ingenuity Pathway Analysis predicted alterations in pathways associated with cellular metabolism and p53 signaling. Downregulation of proteins associated with glycolysis was documented in DCF-treated TE11 and KYSE150. In response to DCF, TE11 cells further displayed reduced levels of ATP, pyruvate, and lactate. Evidence of mitochondrial depolarization and superoxide production was induced by DCF in TE11 and KYSE150. In DCF-treated TE11, the superoxide scavenger MitoTempo improved viability, supporting a role for mitochondrial reactive oxygen species in DCF-mediated toxicity. DCF treatment resulted in increased expression of p53 in TE11 and KYSE150. p53 was further identified as a mediator of DCF-mediated toxicity in TE11 as genetic depletion of p53 partially limited apoptosis in response to DCF. Consistent with the anticancer activity of DCF in vitro, the drug significantly decreased tumor burdene in syngeneic ESCC xenograft tumors and 4-nitroquinoline 1-oxide-mediated ESCC lesions in vivo. These preclinical findings identify DCF as an experimental therapeutic that should be explored further in ESCC.


Subject(s)
Antineoplastic Agents , Diclofenac , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line , Cell Line, Tumor , Cell Proliferation , Diclofenac/pharmacology , Diclofenac/therapeutic use , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Superoxides/metabolism , Superoxides/pharmacology , Superoxides/therapeutic use , Tumor Burden , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Immunity ; 41(6): 934-46, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25526308

ABSTRACT

Gradations in extracellular regulated kinase (ERK) signaling have been implicated in essentially every developmental checkpoint or differentiation process encountered by lymphocytes. Yet, despite intensive effort, the molecular basis by which differences in ERK activation specify alternative cell fates remains poorly understood. We report here that differential ERK signaling controls lymphoid-fate specification through an alternative mode of action. While ERK phosphorylates most substrates, such as RSK, by targeting them through its D-domain, this well-studied mode of ERK action was dispensable for development of γδ T cells. Instead, development of γδ T cells was dependent upon an alternative mode of action mediated by the DEF-binding pocket (DBP) of ERK. This domain enabled ERK to bind a distinct and select set of proteins required for specification of the γδ fate. These data provide the first in vivo demonstration for the role of DBP-mediated interactions in orchestrating alternate ERK-dependent developmental outcomes.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Enzyme Activation/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Mice , Mice, Knockout , Mice, Mutant Strains , Mice, Transgenic , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Stability , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Signal Transduction/genetics , Substrate Specificity/genetics
11.
FASEB J ; 35(6): e21629, 2021 06.
Article in English | MEDLINE | ID: mdl-33949005

ABSTRACT

Cystathionine beta-synthase (CBS) is a key enzyme of the trans-sulfuration pathway that converts homocysteine to cystathionine. Loss of CBS activity due to mutation results in CBS deficiency, an inborn error of metabolism characterized by extreme elevation of plasma total homocysteine (tHcy). C57BL6 mice containing either a homozygous null mutation in the cystathionine ß-synthase (Cbs-/- ) gene or an inactive human CBS protein (Tg-G307S Cbs-/- ) are born in mendelian numbers, but the vast majority die between 18 and 21 days of age due to liver failure. However, adult Cbs null mice that express a hypomorphic allele of human CBS as a transgene (Tg-I278T Cbs-/- ) show almost no neonatal lethality despite having serum tHcy levels similar to mice with no CBS activity. Here, we characterize liver and serum metabolites in neonatal Cbs+/- , Tg-G307S Cbs-/- , and Tg-I278T Cbs-/- mice at 6, 10, and 17 days of age to understand this difference. In serum, we observe similar elevations in tHcy in both Tg-G307S Cbs-/- and Tg-I278T Cbs-/- compared to control animals, but methionine is much more severely elevated in Tg-G307S Cbs-/- mice. Large scale metabolomic analysis of liver tissue confirms that both methionine and methionine-sulfoxide are significantly more elevated in Tg-G307S Cbs-/- animals, along with significant differences in several other metabolites including hexoses, amino acids, other amines, lipids, and carboxylic acids. Our data are consistent with a model that the neonatal lethality observed in CBS-null mice is driven by excess methionine resulting in increased stress on a variety of related pathways including the urea cycle, TCA cycle, gluconeogenesis, and phosphatidylcholine biosynthesis.


Subject(s)
Cystathionine beta-Synthase/physiology , Disease Models, Animal , Liver Failure/pathology , Metabolome , Mutation , Animals , Animals, Newborn , Female , Liver Failure/etiology , Liver Failure/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
12.
Mol Cell Proteomics ; 19(12): 2068-2090, 2020 12.
Article in English | MEDLINE | ID: mdl-32994315

ABSTRACT

Endometrial carcinoma (EC) is the most common gynecologic malignancy in the United States, with limited effective targeted therapies. Endometrial tumors exhibit frequent alterations in protein kinases, yet only a small fraction of the kinome has been therapeutically explored. To identify kinase therapeutic avenues for EC, we profiled the kinome of endometrial tumors and normal endometrial tissues using Multiplexed Inhibitor Beads and Mass Spectrometry (MIB-MS). Our proteomics analysis identified a network of kinases overexpressed in tumors, including Serine/Arginine-Rich Splicing Factor Kinase 1 (SRPK1). Immunohistochemical (IHC) analysis of endometrial tumors confirmed MIB-MS findings and showed SRPK1 protein levels were highly expressed in endometrioid and uterine serous cancer (USC) histological subtypes. Moreover, querying large-scale genomics studies of EC tumors revealed high expression of SRPK1 correlated with poor survival. Loss-of-function studies targeting SRPK1 in an established USC cell line demonstrated SRPK1 was integral for RNA splicing, as well as cell cycle progression and survival under nutrient deficient conditions. Profiling of USC cells identified a compensatory response to SRPK1 inhibition that involved EGFR and the up-regulation of IGF1R and downstream AKT signaling. Co-targeting SRPK1 and EGFR or IGF1R synergistically enhanced growth inhibition in serous and endometrioid cell lines, representing a promising combination therapy for EC.


Subject(s)
Endometrial Neoplasms/enzymology , Mass Spectrometry , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteomics , Apoptosis/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/genetics , Endometrial Neoplasms/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Humans , Neoplasms, Cystic, Mucinous, and Serous/pathology , Prognosis , Protein Serine-Threonine Kinases/metabolism , Proteogenomics , RNA Splicing/genetics , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Survival Analysis , Uterine Neoplasms/pathology
13.
Int J Mol Sci ; 22(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34445631

ABSTRACT

To better understand the etiology of inflammatory breast cancer (IBC) and identify potential therapies, we studied genomic alterations in IBC patients. Targeted, next-generation sequencing (NGS) was performed on cell-free DNA (cfDNA) (n = 33) and paired DNA from tumor tissues (n = 29) from 32 IBC patients. We confirmed complementarity between cfDNA and tumor tissue genetic profiles. We found a high incidence of germline variants in IBC patients that could be associated with an increased risk of developing the disease. Furthermore, 31% of IBC patients showed deficiencies in the homologous recombination repair (HRR) pathway (BRCA1, BRCA2, PALB2, RAD51C, ATM, BARD1) making them sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. We also characterized the tumor-infiltrating lymphocytes (TILs) in tumor tissue biopsies by studying several markers (CD4, CD8, FoxP3, CD20, PD-1, and PD-L1) through immunohistochemistry (IHC) staining. In 7 of 24 (29%) patients, tumor biopsies were positive for PD-L1 and PD-1 expression on TILs, making them sensitive to PD-1/PD-L1 blocking therapies. Our results provide a rationale for considering PARP inhibitors and PD-1/PDL1 blocking immunotherapy in qualifying IBC patients.


Subject(s)
Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , Inflammatory Breast Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Molecular Targeted Therapy , Mutation , Tumor Microenvironment/immunology , Adult , Aged , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell-Free Nucleic Acids/analysis , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Inflammatory Breast Neoplasms/genetics , Inflammatory Breast Neoplasms/immunology , Middle Aged , Prognosis , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Retrospective Studies , Survival Rate
14.
Breast Cancer Res ; 22(1): 134, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33267869

ABSTRACT

BACKGROUND: Inflammatory breast cancer (IBC) is a rare but aggressive carcinoma characterized by severe erythema and edema of the breast, with many patients presenting in advanced metastatic disease. The "inflammatory" nature is not due to classic immune-mediated inflammation, but instead results from tumor-mediated blockage of dermal lymphatic ducts. Previous work has shown that expression of PD-L1 on tumor cells can suppress T cell activation in triple-negative (TN) non-IBC breast cancer. In the present work, we investigated immune parameters in peripheral blood of metastatic IBC patients to determine whether cellular components of the immune system are altered, thereby contributing to pathogenesis of the disease. These immune parameters were also compared to PD-1 and PD-L1 expression in IBC tumor biopsies. METHODS: Flow cytometry-based immune phenotyping was performed using fresh peripheral blood from 14 stage IV IBC patients and compared to 11 healthy age-similar control women. Immunohistochemistry for CD20, CD3, PD-1, and PD-L1 was performed on tumor biopsies of these metastatic IBC patients. RESULTS: IBC patients with Stage IV disease had lymphopenia with significant reductions in circulating T, B, and NK cells. Reductions were observed in all subsets of CD4+ T cells, whereas reductions in CD8+ T cells were more concentrated in memory subsets. Immature cytokine-producing CD56bright NK cells expressed higher levels of FcγRIIIa and cytolytic granule components, suggesting accelerated maturation to cytolytic CD56dim cells. Immunohistochemical analysis of tumor biopsies demonstrated moderate to high expression of PD-1 in 18.2% of patients and of PD-L1 in 36.4% of patients. Interestingly, a positive correlation was observed between co-expression levels of PD-L1 and PD-1 in tumor biopsies, and higher expression of PD-L1 in tumor biopsies correlated with higher expression of cytolytic granule components in blood CD4+ T cells and CD56dim NK cells, and higher numbers of CD8+ effector memory T cells in peripheral blood. PD-1 expression in tumor also correlated with increased infiltration of CD20+ B cells in the tumor. CONCLUSIONS: Our results suggest that while lymphocyte populations are severely compromised in stage IV IBC patients, an immune response toward the tumor had occurred in some patients, providing biological rationale to evaluate PD-1/PD-L1 immunotherapies for IBC.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma/immunology , Inflammatory Breast Neoplasms/immunology , T-Lymphocytes/immunology , Adult , Aged , Antigens, CD20/analysis , Antigens, CD20/metabolism , B7-H1 Antigen/analysis , B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Biopsy , Breast/immunology , Breast/pathology , CD3 Complex/analysis , CD3 Complex/metabolism , Carcinoma/blood , Carcinoma/diagnosis , Carcinoma/secondary , Case-Control Studies , Female , Flow Cytometry , Humans , Immunity, Cellular , Immunohistochemistry , Immunophenotyping/methods , Inflammatory Breast Neoplasms/blood , Inflammatory Breast Neoplasms/diagnosis , Inflammatory Breast Neoplasms/pathology , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Middle Aged , Neoplasm Staging , Programmed Cell Death 1 Receptor/analysis , Programmed Cell Death 1 Receptor/metabolism , Retrospective Studies , T-Lymphocytes/metabolism
15.
Cell Microbiol ; 21(8): e13038, 2019 08.
Article in English | MEDLINE | ID: mdl-31050118

ABSTRACT

Influenza virus matrix 1 protein (M1) is highly conserved and plays essential roles at many stages of virus life cycle. Here, we used a yeast two-hybrid system to identify the host protein SLD5, a component of the GINS complex, which is essential for the initiation of DNA replication in eukaryotic cells, as a new M1 interacting protein. M1 from several different influenza virus strains all interacted with SLD5. Overexpression of SLD5 suppressed influenza virus replication. Transient, stable, or inducible expression of M1 induced host cell cycle blockade at G0/G1 phase. Moreover, SLD5 partially rescued M1 expression- or influenza virus infection-induced G0/G1 phase accumulation in cell lines and primary mouse embryonic fibroblasts. Importantly, SLD5 transgenic mice exhibited higher resistance and improved lung epithelial regeneration after virus infection compared with wild-type mice. Therefore, influenza virus M1 blocks host cell cycle process by interacting with SLD5. Our finding reveals the multifunctional nature of M1 and provides new insight for understanding influenza virus-host interaction.


Subject(s)
Cell Cycle/genetics , Chromosomal Proteins, Non-Histone/genetics , Host-Pathogen Interactions/genetics , Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/genetics , Viral Matrix Proteins/genetics , A549 Cells , Animals , Chromosomal Proteins, Non-Histone/metabolism , Dogs , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression Regulation , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/metabolism , Lung/metabolism , Lung/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Mice, Transgenic , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Primary Cell Culture , Protein Binding , Signal Transduction , Two-Hybrid System Techniques , Viral Matrix Proteins/metabolism , Virus Replication/genetics
16.
J Immunol ; 200(10): 3626-3634, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29654208

ABSTRACT

The cytokine IFN-γ has well-established antibacterial properties against the bacterium Salmonella enterica in phagocytes, but less is known about the effects of IFN-γ on Salmonella-infected nonphagocytic cells, such as intestinal epithelial cells (IECs) and fibroblasts. In this article, we show that exposing human and murine IECs and fibroblasts to IFN-γ following infection with Salmonella triggers a novel form of cell death that is neither pyroptosis nor any of the major known forms of programmed cell death. Cell death required IFN-γ-signaling via STAT1-IRF1-mediated induction of guanylate binding proteins and the presence of live Salmonella in the cytosol. In vivo, ablating IFN-γ signaling selectively in murine IECs led to higher bacterial burden in colon contents and increased inflammation in the intestine of infected mice. Together, these results demonstrate that IFN-γ signaling triggers release of Salmonella from the Salmonella-containing vacuole into the cytosol of infected nonphagocytic cells, resulting in a form of nonpyroptotic cell death that prevents bacterial spread in the gut.


Subject(s)
Cell Death/immunology , Interferon-gamma/immunology , Phagocytes/immunology , Pyroptosis/immunology , Salmonella Infections/immunology , Salmonella enterica/immunology , 3T3 Cells , Animals , Cell Line , Cytosol/immunology , Cytosol/microbiology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Fibroblasts/immunology , Fibroblasts/microbiology , Humans , Inflammation/immunology , Inflammation/microbiology , Interferon Regulatory Factor-1/immunology , Intestines/immunology , Intestines/microbiology , Mice , Phagocytes/microbiology , STAT1 Transcription Factor/immunology , Salmonella Infections/microbiology
17.
Proc Natl Acad Sci U S A ; 113(25): 6955-60, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27274057

ABSTRACT

Non-small cell lung cancer (NSCLC) has a 5-y survival rate of ∼16%, with most deaths associated with uncontrolled metastasis. We screened for stem cell identity-related genes preferentially expressed in a panel of cell lines with high versus low metastatic potential, derived from NSCLC tumors of Kras(LA1/+);P53(R172HΔG/+) (KP) mice. The Musashi-2 (MSI2) protein, a regulator of mRNA translation, was consistently elevated in metastasis-competent cell lines. MSI2 was overexpressed in 123 human NSCLC tumor specimens versus normal lung, whereas higher expression was associated with disease progression in an independent set of matched normal/primary tumor/lymph node specimens. Depletion of MSI2 in multiple independent metastatic murine and human NSCLC cell lines reduced invasion and metastatic potential, independent of an effect on proliferation. MSI2 depletion significantly induced expression of proteins associated with epithelial identity, including tight junction proteins [claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)] and down-regulated direct translational targets associated with epithelial-mesenchymal transition, including the TGF-ß receptor 1 (TGFßR1), the small mothers against decapentaplegic homolog 3 (SMAD3), and the zinc finger proteins SNAI1 (SNAIL) and SNAI2 (SLUG). Overexpression of TGFßRI reversed the loss of invasion associated with MSI2 depletion, whereas overexpression of CLDN7 inhibited MSI2-dependent invasion. Unexpectedly, MSI2 depletion reduced E-cadherin expression, reflecting a mixed epithelial-mesenchymal phenotype. Based on this work, we propose that MSI2 provides essential support for TGFßR1/SMAD3 signaling and contributes to invasive adenocarcinoma of the lung and may serve as a predictive biomarker of NSCLC aggressiveness.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Claudins/antagonists & inhibitors , Lung Neoplasms/pathology , RNA-Binding Proteins/physiology , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Claudins/physiology , Humans , Mice , Neoplasm Metastasis
18.
J Cell Physiol ; 233(11): 8952-8961, 2018 11.
Article in English | MEDLINE | ID: mdl-29904909

ABSTRACT

Malignant mesothelioma (MM) is a therapy-resistant cancer arising primarily from the lining of the pleural and peritoneal cavities. The most frequently altered genes in human MM are cyclin-dependent kinase inhibitor 2A (CDKN2A), which encodes components of the p53 (p14ARF) and RB (p16INK4A) pathways, BRCA1-associated protein 1 (BAP1), and neurofibromatosis 2 (NF2). Furthermore, the p53 gene (TP53) itself is mutated in ~15% of MMs. In many MMs, the PI3K-PTEN-AKT-mTOR signaling node is hyperactivated, which contributes to tumor cell survival and therapeutic resistance. Here, we demonstrate that the inactivation of both Tp53 and Pten in the mouse mesothelium is sufficient to rapidly drive aggressive MMs. PtenL/L ;Tp53L/L mice injected intraperitoneally or intrapleurally with adenovirus-expressing Cre recombinase developed high rates of peritoneal and pleural MMs (92% of mice with a median latency of 9.4 weeks and 56% of mice with a median latency of 19.3 weeks, respectively). MM cells from these mice showed consistent activation of Akt-mTor signaling, chromosome breakage or aneuploidy, and upregulation of Myc; occasional downregulation of Bap1 was also observed. Collectively, these findings suggest that when Pten and Tp53 are lost in combination in mesothelial cells, DNA damage is not adequately repaired and genomic instability is widespread, whereas the activation of Akt due to Pten loss protects genomically damaged cells from apoptosis, thereby increasing the likelihood of tumor formation. Additionally, the mining of an online dataset (The Cancer Genome Atlas) revealed codeletions of PTEN and TP53 and/or CDKN2A/p14ARF in ~25% of human MMs, indicating that cooperative losses of these genes contribute to the development of a significant proportion of these aggressive neoplasms and suggesting key target pathways for therapeutic intervention.


Subject(s)
Lung Neoplasms/genetics , Mesothelioma/genetics , PTEN Phosphohydrolase/genetics , Pleural Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Animals , Carcinogenesis/genetics , Cell Proliferation/genetics , Disease Models, Animal , Humans , Lung Neoplasms/pathology , Mesothelioma/pathology , Mesothelioma, Malignant , Mice , PTEN Phosphohydrolase/antagonists & inhibitors , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/pathology , Pleural Neoplasms/pathology , Signal Transduction , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
19.
Dev Dyn ; 246(7): 517-530, 2017 07.
Article in English | MEDLINE | ID: mdl-28387983

ABSTRACT

BACKGROUND: Phosphatase and tensin homologue on chromosome 10 (Pten), a lipid phosphatase originally identified as a tumor-suppressor gene, regulates the phosphoinositol 3 kinase signaling pathway and impacts cell death and proliferation. Pten mutant embryos die at early stages of development, although the particular developmental deficiency and the mechanisms are not yet fully understood. RESULTS: We analyzed Pten mutant embryos in detail and found that the formation of the proamniotic cavity is impaired. Embryoid bodies derived from Pten-null embryonic stem cells failed to undergo cavitation, reproducing the embryonic phenotype in vitro. Analysis of embryoid bodies and embryos revealed a role of Pten in the initiation of the focal point of the epithelial rosette that develops into the proamniotic lumen, and in establishment of epithelial polarity to transform the amorphous epiblast cells into a polarized epithelium. CONCLUSIONS: We conclude that Pten is required for proamniotic cavity formation by establishing polarity for epiblast cells to form a rosette that expands into the proamniotic lumen, rather than facilitating apoptosis to create the cavity. Developmental Dynamics 246:517-530, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Amnion/ultrastructure , Cell Polarity , Epithelium/ultrastructure , PTEN Phosphohydrolase/physiology , Animals , Embryo, Mammalian , Embryoid Bodies , Epithelium/embryology , Germ Layers/cytology , Mice
20.
Breast Cancer Res ; 19(1): 62, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28558830

ABSTRACT

BACKGROUND: Recent genome-wide profiling by sequencing and distinctive chromatin signatures has identified thousands of long non-coding RNA (lncRNA) species (>200 nt). LncRNAs have emerged as important regulators of gene expression, involving in both developmental and pathological processes. While altered expression of lncRNAs has been observed in breast cancer development, their roles in breast cancer progression and metastasis are still poorly understood. METHODS: To identify novel breast cancer-associated lncRNA candidates, we employed a high-density SNP array-based approach to uncover intergenic lncRNA genes that are aberrantly expressed in breast cancer. We first evaluated the potential value as a breast cancer prognostic biomarker for one breast cancer-associated lncRNA, LincIN, using a breast cancer cohort retrieved from The Cancer Genome Atlas (TCGA) Data Portal. Then we characterized the role of LincIN in breast cancer progression and metastasis by in vitro invasion assay and a mouse tail vein injection metastasis model. To study the action of LincIN, we identified LincIN-interacting protein partner(s) by RNA pull-down experiments followed with protein identification by mass spectrometry. RESULTS: High levels of LincIN expression are frequently observed in tumors compared to adjacent normal tissues, and are strongly associated with aggressive breast cancer. Importantly, analysis of TCGA data further suggest that high expression of LincIN is associated with poor overall survival in patients with breast cancer (P = 0.044 and P = 0.011 after adjustment for age). The functional experiments demonstrate that knockdown of LincIN inhibits tumor cell migration and invasion in vitro, which is supported by the results of transcriptome analysis in the LincIN-knockdown cells. Furthermore, knockdown of LincIN diminishes lung metastasis in a mouse tail vein injection model. We also identified a LincIN-binding protein, NF90, through which overexpression of LincIN may repress p21 protein expression by inhibiting its translation, and upregulation of p21 by LincIN knockdown may be associated with less aggressive metastasis phenotypes. CONCLUSIONS: Our studies provide clear evidence to support LincIN as a new regulator of tumor progression-metastasis at both transcriptional and translational levels and as a promising prognostic biomarker for breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression , RNA, Long Noncoding/genetics , Animals , Breast Neoplasms/mortality , Cell Cycle/genetics , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Mice , Neoplasm Metastasis , Neoplasm Staging , Nuclear Factor 90 Proteins/metabolism , Prognosis , Protein Binding , Protein Processing, Post-Translational , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL