Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 110(1): 270-5, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23248284

ABSTRACT

Bispecific antibodies (bscAbs), particularly those of the bispecific T-cell engager (BiTE) subclass, have been shown to effectively redirect T cells against cancer. Previous efforts to target antigens expressed in both tumors and normal tissues have produced significant toxicity, however. Moreover, like other large molecules, bscAbs may be restricted from entry into the "immunologically privileged" CNS. A tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, is a constitutively activated tyrosine kinase not found in normal tissues but frequently expressed in glioblastomas and many other neoplasms. Because it is localized solely to tumor tissue, EGFRvIII presents an ideal target for immunotherapy. Here we report the preclinical evaluation of an EGFRvIII-targeted BiTE, bscEGFRvIIIxCD3. Our results show that bscEGFRvIIIxCD3 activates T cells to mediate potent and antigen-specific lysis of EGFRvIII-expressing gliomas in vitro (P < 0.001) at exceedingly low concentrations (10 ng/mL) and effector-to-target ratios (2.5:1). Treatment with i.v. bscEGFRvIIIxCD3 yielded extended survival in mice with well-established intracerebral tumors (P < 0.05) and achieved durable complete cure at rates up to 75%. Antitumor efficacy was significantly abrogated on blockade of EGFRvIII binding, demonstrating the need for target antigen specificity both in vitro and in vivo. These results demonstrate that BiTEs can be used to elicit functional antitumor immunity in the CNS, and that peptide blockade of BiTE-mediated activity may greatly enhance the safety profile for antibody-redirected T-cell therapies. Finally, bscEGFRvIIIxCD3 represents a unique advancement in BiTE technology given its exquisite tumor specificity, which enables precise elimination of cancer without the risk of autoimmune toxicity.


Subject(s)
Antibodies, Bispecific/pharmacology , Brain Neoplasms/drug therapy , ErbB Receptors/immunology , Glioma/drug therapy , Immunotherapy/methods , Animals , Antibodies, Bispecific/administration & dosage , Brain Neoplasms/immunology , Chromatography , Electrophoresis, Polyacrylamide Gel , ErbB Receptors/genetics , Escherichia coli , Flow Cytometry , Glioma/immunology , Mice , Surface Plasmon Resonance , T-Lymphocytes/immunology , Treatment Outcome
2.
Expert Opin Biol Ther ; 11(7): 843-53, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21449821

ABSTRACT

INTRODUCTION: Although considerable evidence supports the hypothesis that T cells play a critical role in the immune response against cancer, the ability to mount and sustain tumor-specific cellular responses in vivo remains a challenge. A strategy that harnesses the cytotoxic advantage of T cell therapy is the use of bispecific antibodies designed to engage and activate endogenous polyclonal T cell populations via the CD3 complex, but only in the presence of a tumor antigen. While antibody constructs with dual specificity were first described as anticancer therapeutics over 25 years ago, it was not until recently that one subclass of bispecific single-chain antibody, the bispecific T cell engager (BiTE), emerged as superior to previous iterations in achieving efficacy in animal models and early clinical trials. AREAS COVERED: The evolution of bispecific antibodies in antitumor immunotherapy is reviewed and the greatest hurdles impeding their clinical translation are discussed, specifically in the context of immunoprivileged sites as is the case for intracerebral malignancy. EXPERT OPINION: The BiTE platform has great potential in the treatment of malignant disease. Despite burgeoning interest in bispecific antibodies and permutations thereof, the issues of stability and cost-effective production persist as obstacles.


Subject(s)
Antibodies, Bispecific/pharmacology , Cancer Vaccines/pharmacology , Lymphocyte Activation/drug effects , Neoplasms/drug therapy , T-Lymphocytes/drug effects , Tumor Escape/drug effects , Animals , Antibodies, Bispecific/history , Antigens, Neoplasm/immunology , CD3 Complex/immunology , Cancer Vaccines/history , History, 20th Century , History, 21st Century , Humans , Neoplasms/immunology , T-Lymphocytes/immunology
3.
Biochem Biophys Res Commun ; 309(4): 946-51, 2003 Oct 03.
Article in English | MEDLINE | ID: mdl-13679065

ABSTRACT

Angiopoietin-2 (Ang2) promotes tumor growth and metastasis by specifically priming endothelial cells for angiogenesis. Multiple angiogenic factors up-regulate expression of Ang2, suggesting that Ang2 may be the common pathway in growth factor initiated-angiogenesis. Using phage display technology, we generated single chain Fv molecule against human Ang2 (scFv-Ang2) with high affinity (K(d)=0.01 microM) from a mouse phage antibody library. Compared with control scFv, the mouse scFv-Ang2 completely inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) treated with vascular endothelial growth factor (VEGF, 10 ng/ml), but not that of the cells treated with either basic fibroblast growth factor, or angiotensin II, or Ang2. Chemotaxis assay showed that scFv-Ang2 could block completely Ang2-induced (100%) and partially VEGF-induced (49%) migration of HUVECs. The results indicate that Ang2 takes part in the VEGF-induced angiogenesis and scFv-Ang2 might be a promising compound in blocking both VEGF and Ang2 induced angiogenesis.


Subject(s)
Angiopoietin-2/immunology , Chemotaxis/drug effects , Endothelium, Vascular/drug effects , Immunoglobulin Fragments/pharmacology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Female , Mice , Mice, Inbred BALB C , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL