Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 454
Filter
Add more filters

Publication year range
1.
Cell ; 184(26): 6262-6280.e26, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34910928

ABSTRACT

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.


Subject(s)
Colonic Polyps/pathology , Colorectal Neoplasms/pathology , Tumor Microenvironment , Adaptive Immunity , Adenoma/genetics , Adenoma/pathology , Adult , Aged , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Death , Cell Differentiation , Colonic Polyps/genetics , Colonic Polyps/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genetic Heterogeneity , Humans , Male , Mice , Middle Aged , Mutation/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA-Seq , Reproducibility of Results , Single-Cell Analysis , Tumor Microenvironment/immunology
2.
Am J Hum Genet ; 111(3): 456-472, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38367619

ABSTRACT

The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.


Subject(s)
MicroRNAs , Smokers , Humans , Nicotine , Epigenesis, Genetic/genetics , Epigenome , Cohort Studies , Prospective Studies , Genome-Wide Association Study , DNA Methylation/genetics , CpG Islands/genetics , Receptors, Peptide/genetics , Receptors, G-Protein-Coupled/genetics
3.
Hum Mol Genet ; 33(4): 333-341, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37903058

ABSTRACT

Transcriptome-wide association studies (TWAS) have identified many putative susceptibility genes for colorectal cancer (CRC) risk. However, susceptibility miRNAs, critical dysregulators of gene expression, remain unexplored. We genotyped DNA samples from 313 CRC East Asian patients and performed small RNA sequencing in their normal colon tissues distant from tumors to build genetic models for predicting miRNA expression. We applied these models and data from genome-wide association studies (GWAS) including 23 942 cases and 217 267 controls of East Asian ancestry to investigate associations of predicted miRNA expression with CRC risk. Perturbation experiments separately by promoting and inhibiting miRNAs expressions and further in vitro assays in both SW480 and HCT116 cells were conducted. At a Bonferroni-corrected threshold of P < 4.5 × 10-4, we identified two putative susceptibility miRNAs, miR-1307-5p and miR-192-3p, located in regions more than 500 kb away from any GWAS-identified risk variants in CRC. We observed that a high predicted expression of miR-1307-5p was associated with increased CRC risk, while a low predicted expression of miR-192-3p was associated with increased CRC risk. Our experimental results further provide strong evidence of their susceptible roles by showing that miR-1307-5p and miR-192-3p play a regulatory role, respectively, in promoting and inhibiting CRC cell proliferation, migration, and invasion, which was consistently observed in both SW480 and HCT116 cells. Our study provides additional insights into the biological mechanisms underlying CRC development.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Transcriptome/genetics , Genome-Wide Association Study , Colorectal Neoplasms/metabolism , HCT116 Cells , Gene Expression Regulation, Neoplastic/genetics , Cell Proliferation/genetics
4.
Hum Mol Genet ; 33(8): 687-697, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38263910

ABSTRACT

BACKGROUND: Expansion of genome-wide association studies across population groups is needed to improve our understanding of shared and unique genetic contributions to breast cancer. We performed association and replication studies guided by a priori linkage findings from African ancestry (AA) relative pairs. METHODS: We performed fixed-effect inverse-variance weighted meta-analysis under three significant AA breast cancer linkage peaks (3q26-27, 12q22-23, and 16q21-22) in 9241 AA cases and 10 193 AA controls. We examined associations with overall breast cancer as well as estrogen receptor (ER)-positive and negative subtypes (193,132 SNPs). We replicated associations in the African-ancestry Breast Cancer Genetic Consortium (AABCG). RESULTS: In AA women, we identified two associations on chr12q for overall breast cancer (rs1420647, OR = 1.15, p = 2.50×10-6; rs12322371, OR = 1.14, p = 3.15×10-6), and one for ER-negative breast cancer (rs77006600, OR = 1.67, p = 3.51×10-6). On chr3, we identified two associations with ER-negative disease (rs184090918, OR = 3.70, p = 1.23×10-5; rs76959804, OR = 3.57, p = 1.77×10-5) and on chr16q we identified an association with ER-negative disease (rs34147411, OR = 1.62, p = 8.82×10-6). In the replication study, the chr3 associations were significant and effect sizes were larger (rs184090918, OR: 6.66, 95% CI: 1.43, 31.01; rs76959804, OR: 5.24, 95% CI: 1.70, 16.16). CONCLUSION: The two chr3 SNPs are upstream to open chromatin ENSR00000710716, a regulatory feature that is actively regulated in mammary tissues, providing evidence that variants in this chr3 region may have a regulatory role in our target organ. Our study provides support for breast cancer variant discovery using prioritization based on linkage evidence.


Subject(s)
Black People , Breast Neoplasms , Genetic Predisposition to Disease , Female , Humans , Black People/genetics , Breast Neoplasms/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
5.
Am J Hum Genet ; 109(12): 2185-2195, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36356581

ABSTRACT

By combining data from 160,500 individuals with breast cancer and 226,196 controls of Asian and European ancestry, we conducted genome- and transcriptome-wide association studies of breast cancer. We identified 222 genetic risk loci and 137 genes that were associated with breast cancer risk at a p < 5.0 × 10-8 and a Bonferroni-corrected p < 4.6 × 10-6, respectively. Of them, 32 loci and 15 genes showed a significantly different association between ER-positive and ER-negative breast cancer after Bonferroni correction. Significant ancestral differences in risk variant allele frequencies and their association strengths with breast cancer risk were identified. Of the significant associations identified in this study, 17 loci and 14 genes are located 1Mb away from any of the previously reported breast cancer risk variants. Pathways analyses including 221 putative risk genes identified multiple signaling pathways that may play a significant role in the development of breast cancer. Our study provides a comprehensive understanding of and new biological insights into the genetics of this common malignancy.


Subject(s)
Breast Neoplasms , Genome-Wide Association Study , Female , Humans , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Transcriptome/genetics , Breast Neoplasms/genetics , Case-Control Studies
6.
Int J Cancer ; 155(3): 519-531, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38602070

ABSTRACT

Early detection is critical for improving pancreatic cancer prognosis. Our study aims to identify circulating microRNAs (miRNAs) associated with pancreatic cancer risk. The two-stage study used plasma samples collected ≤5 years prior to cancer diagnosis, from case-control studies nested in five prospective cohort studies. The discovery stage included 185 case-control pairs from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Replication stage samples comprised 277 pairs from Shanghai Women's Health Study/Shanghai Men's Health Study, Southern Community Cohort Study, and Multiethnic Cohort Study. Seven hundred and ninety-eight miRNAs were measured using the NanoString nCounter Analysis System. Odds ratios (OR) and 95% confidence intervals (CI) for per 10% change in miRNAs in association with pancreatic cancer risk were derived from conditional logistic regression analysis in discovery and replication studies, separately, and then meta-analyzed. Stratified analysis was conducted by age at diagnosis (<65/≥65 years) and time interval between sample collection and diagnosis (≤2/>2 years). In the discovery stage, 120 risk associated miRNAs were identified at p < .05. Three were validated in the replication stage: hsa-miR-199a-3p/hsa-miR-199b-3p, hsa-miR-767-5p, and hsa-miR-191-5p, with respective ORs (95% CI) being 0.89 (0.84-0.95), 1.08 (1.02-1.13), and 0.90 (0.85-0.95). Five additional miRNAs, hsa-miR-640, hsa-miR-874-5p, hsa-miR-1299, hsa-miR-22-3p, and hsa-miR-449b-5p, were validated among patients diagnosed at ≥65 years, with OR (95% CI) of 1.23 (1.09-1.39), 1.33 (1.16-1.52), 1.25 (1.09-1.43), 1.28 (1.12-1.46), 0.76 (0.65-0.89), and 1.22 (1.07-1.39), respectively. The miRNA targets were enriched in pancreatic carcinogenesis/progression-related pathways. Our study suggests that circulating miRNAs may identify individuals at high risk for pancreatic cancer ≤5 years prior to diagnosis, indicating its potential utility in cancer screening and surveillance.


Subject(s)
Biomarkers, Tumor , Circulating MicroRNA , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Female , Male , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Middle Aged , Case-Control Studies , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Prospective Studies , Risk Factors , Early Detection of Cancer/methods , MicroRNAs/blood , MicroRNAs/genetics , Prognosis
7.
Int J Cancer ; 155(3): 508-518, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38651675

ABSTRACT

The etiology of lung cancer in never-smokers remains elusive, despite 15% of lung cancer cases in men and 53% in women worldwide being unrelated to smoking. Here, we aimed to enhance our understanding of lung cancer pathogenesis among never-smokers using untargeted metabolomics. This nested case-control study included 395 never-smoking women who developed lung cancer and 395 matched never-smoking cancer-free women from the prospective Shanghai Women's Health Study with 15,353 metabolic features quantified in pre-diagnostic plasma using liquid chromatography high-resolution mass spectrometry. Recognizing that metabolites often correlate and seldom act independently in biological processes, we utilized a weighted correlation network analysis to agnostically construct 28 network modules of correlated metabolites. Using conditional logistic regression models, we assessed the associations for both metabolic network modules and individual metabolic features with lung cancer, accounting for multiple testing using a false discovery rate (FDR) < 0.20. We identified a network module of 121 features inversely associated with all lung cancer (p = .001, FDR = 0.028) and lung adenocarcinoma (p = .002, FDR = 0.056), where lyso-glycerophospholipids played a key role driving these associations. Another module of 440 features was inversely associated with lung adenocarcinoma (p = .014, FDR = 0.196). Individual metabolites within these network modules were enriched in biological pathways linked to oxidative stress, and energy metabolism. These pathways have been implicated in previous metabolomics studies involving populations exposed to known lung cancer risk factors such as traffic-related air pollution and polycyclic aromatic hydrocarbons. Our results suggest that untargeted plasma metabolomics could provide novel insights into the etiology and risk factors of lung cancer among never-smokers.


Subject(s)
Lung Neoplasms , Metabolomics , Humans , Female , Lung Neoplasms/blood , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Case-Control Studies , Middle Aged , Metabolomics/methods , China/epidemiology , Prospective Studies , Aged , Metabolic Networks and Pathways , Non-Smokers/statistics & numerical data , Risk Factors , Women's Health , Biomarkers, Tumor/blood , Smoking/adverse effects , Smoking/blood
8.
Cancer ; 130(11): 2014-2030, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38319284

ABSTRACT

BACKGROUND: Little research has focused on the relationship between gut microbiome and chemotherapy-induced toxicity. METHODS: This prospective study involves 301 patients with breast cancer who had prechemotherapy stool samples collected. Gut microbiome was sequenced by shotgun metagenomics; associations with chemotherapy-induced toxicities during first-line treatment by gut microbial diversity, composition, and metabolic pathways with severe (i.e., grade ≥3) hematological and gastrointestinal toxicities were evaluated via multivariable logistic regression. RESULTS: High prechemotherapy α-diversity was associated with a significantly reduced risk of both severe hematological toxicity (odds ratio [OR] = 0.94; 95% CI, 0.89-0.99; p = .048) and neutropenia (OR = 0.94; 95% CI, 0.89-0.99; p = .016). A high abundance of phylum Synergistota, class Synergistia, and order Synergistales were significantly associated with a reduced risk of severe neutropenia; conversely, enrichment of phylum Firmicutes C, class Negativicutes, phylum Firmicutes I, and class Bacilli A, order Paenibacillales were significantly associated with an increased risk of severe neutropenia (p range: 0.012-2.32 × 10-3; false discovery rate <0.1). Significant positive associations were also observed between severe nausea/vomiting and high Chao1 indexes, ß-diversity (p < .05), 20 species belonging to the family Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae (p value range: 6.14 × 10-3 to 1.33 × 10-5; false discovery rate <0.1), and three metabolic pathways involved in reductive tricarboxylic acid cycle I and cycle II, and an incomplete reductive tricarboxylic acid cycle (p < .01). Conversely, a high abundance of species Odoribacter laneus and the pathway related to the L-proline biosynthesis II were inversely associated with severe nausea/vomiting. CONCLUSIONS: Our study suggests that gut microbiota may be a potential preventive target to reduce chemotherapy-induced toxicity.


Subject(s)
Breast Neoplasms , Gastrointestinal Microbiome , Humans , Breast Neoplasms/drug therapy , Gastrointestinal Microbiome/drug effects , Female , Middle Aged , Prospective Studies , Aged , Adult , Neutropenia/chemically induced , Neutropenia/microbiology , Metagenomics/methods , Feces/microbiology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Agents/adverse effects
9.
Br J Cancer ; 130(8): 1286-1294, 2024 May.
Article in English | MEDLINE | ID: mdl-38388856

ABSTRACT

BACKGROUND: We characterized age at diagnosis and estimated sex differences for lung cancer and its histological subtypes among individuals who never smoke. METHODS: We analyzed the distribution of age at lung cancer diagnosis in 33,793 individuals across 8 cohort studies and two national registries from East Asia, the United States (US) and the United Kingdom (UK). Student's t-tests were used to assess the study population differences (Δ years) in age at diagnosis comparing females and males who never smoke across subgroups defined by race/ethnicity, geographic location, and histological subtypes. RESULTS: We found that among Chinese individuals diagnosed with lung cancer who never smoke, females were diagnosed with lung cancer younger than males in the Taiwan Cancer Registry (n = 29,832) (Δ years = -2.2 (95% confidence interval (CI):-2.5, -1.9), in Shanghai (n = 1049) (Δ years = -1.6 (95% CI:-2.9, -0.3), and in Sutter Health and Kaiser Permanente Hawai'i in the US (n = 82) (Δ years = -11.3 (95% CI: -17.7, -4.9). While there was a suggestion of similar patterns in African American and non-Hispanic White individuals. the estimated differences were not consistent across studies and were not statistically significant. CONCLUSIONS: We found evidence of sex differences for age at lung cancer diagnosis among individuals who never smoke.


Subject(s)
Ethnicity , Lung Neoplasms , Humans , Male , Female , United States/epidemiology , Smoke , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Lung Neoplasms/pathology , China , White
10.
Am J Hum Genet ; 108(7): 1190-1203, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34146516

ABSTRACT

A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10-31).


Subject(s)
Insulin-Like Growth Factor Binding Protein 5/genetics , Molecular Sequence Annotation , Promoter Regions, Genetic , Breast Neoplasms/genetics , CRISPR-Cas Systems , Cell Line , Chromosome Mapping , Chromosomes, Human, Pair 2 , Female , Genetic Association Studies , Genetic Variation , Humans , Risk Factors , Sequence Deletion
11.
Am J Hum Genet ; 108(4): 564-582, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33713608

ABSTRACT

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.


Subject(s)
Black People/genetics , Body Height/genetics , Genome-Wide Association Study , Africa/ethnology , Black or African American/genetics , Europe/ethnology , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics
12.
Thorax ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702190

ABSTRACT

BACKGROUND: The aetiology of lung cancer among individuals who never smoked remains elusive, despite 15% of lung cancer cases in men and 53% in women worldwide being unrelated to smoking. Epigenetic alterations, particularly DNA methylation (DNAm) changes, have emerged as potential drivers. Yet, few prospective epigenome-wide association studies (EWAS), primarily focusing on peripheral blood DNAm with limited representation of never smokers, have been conducted. METHODS: We conducted a nested case-control study of 80 never-smoking incident lung cancer cases and 83 never-smoking controls within the Shanghai Women's Health Study and Shanghai Men's Health Study. DNAm was measured in prediagnostic oral rinse samples using Illumina MethylationEPIC array. Initially, we conducted an EWAS to identify differentially methylated positions (DMPs) associated with lung cancer in the discovery sample of 101 subjects. The top 50 DMPs were further evaluated in a replication sample of 62 subjects, and results were pooled using fixed-effect meta-analysis. RESULTS: Our study identified three DMPs significantly associated with lung cancer at the epigenome-wide significance level of p<8.22×10-8. These DMPs were identified as cg09198866 (MYH9; TXN2), cg01411366 (SLC9A10) and cg12787323. Furthermore, examination of the top 1000 DMPs indicated significant enrichment in epithelial regulatory regions and their involvement in small GTPase-mediated signal transduction pathways. Additionally, GrimAge acceleration was identified as a risk factor for lung cancer (OR=1.19 per year; 95% CI 1.06 to 1.34). CONCLUSIONS: While replication in a larger sample size is necessary, our findings suggest that DNAm patterns in prediagnostic oral rinse samples could provide novel insights into the underlying mechanisms of lung cancer in never smokers.

13.
BMC Med ; 22(1): 249, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886716

ABSTRACT

BACKGROUND: Residing in a disadvantaged neighborhood has been linked to increased mortality. However, the impact of residential segregation and social vulnerability on cause-specific mortality is understudied. Additionally, the circulating metabolic correlates of neighborhood sociodemographic environment remain unexplored. Therefore, we examined multiple neighborhood sociodemographic metrics, i.e., neighborhood deprivation index (NDI), residential segregation index (RSI), and social vulnerability index (SVI), with all-cause and cardiovascular disease (CVD) and cancer-specific mortality and circulating metabolites in the Southern Community Cohort Study (SCCS). METHODS: The SCCS is a prospective cohort of primarily low-income adults aged 40-79, enrolled from the southeastern United States during 2002-2009. This analysis included self-reported Black/African American or non-Hispanic White participants and excluded those who died or were lost to follow-up ≤ 1 year. Untargeted metabolite profiling was performed using baseline plasma samples in a subset of SCCS participants. RESULTS: Among 79,631 participants, 23,356 deaths (7214 from CVD and 5394 from cancer) were documented over a median 15-year follow-up. Higher NDI, RSI, and SVI were associated with increased all-cause, CVD, and cancer mortality, independent of standard clinical and sociodemographic risk factors and consistent between racial groups (standardized HRs among all participants were 1.07 to 1.20 in age/sex/race-adjusted model and 1.04 to 1.08 after comprehensive adjustment; all P < 0.05/3 except for cancer mortality after comprehensive adjustment). The standard risk factors explained < 40% of the variations in NDI/RSI/SVI and mediated < 70% of their associations with mortality. Among 1110 circulating metabolites measured in 1688 participants, 134 and 27 metabolites were associated with NDI and RSI (all FDR < 0.05) and mediated 61.7% and 21.2% of the NDI/RSI-mortality association, respectively. Adding those metabolites to standard risk factors increased the mediation proportion from 38.4 to 87.9% and 25.8 to 42.6% for the NDI/RSI-mortality association, respectively. CONCLUSIONS: Among low-income Black/African American adults and non-Hispanic White adults living in the southeastern United States, a disadvantaged neighborhood sociodemographic environment was associated with increased all-cause and CVD and cancer-specific mortality beyond standard risk factors. Circulating metabolites may unveil biological pathways underlying the health effect of neighborhood sociodemographic environment. More public health efforts should be devoted to reducing neighborhood environment-related health disparities, especially for low-income individuals.


Subject(s)
White People , Humans , Southeastern United States/epidemiology , Middle Aged , Male , Female , Aged , Adult , Prospective Studies , White People/statistics & numerical data , Cardiovascular Diseases/mortality , Residence Characteristics , Neoplasms/mortality , Neoplasms/blood , Black or African American/statistics & numerical data , Neighborhood Characteristics , Poverty , Mortality/trends , Socioeconomic Factors
14.
Mol Carcinog ; 63(5): 849-858, 2024 May.
Article in English | MEDLINE | ID: mdl-38517045

ABSTRACT

The association between metformin use and risk of prostate cancer remains controversial, while data from randomized trials is lacking. We aim to evaluate the association of genetically proxied metformin effects with prostate cancer risk using a drug-target Mendelian randomization (MR) approach. Summary statistics for prostate cancer were obtained from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome Consortium (79,148 cases and 61,106 controls). Cis-expression quantitative trait loci (cis-eQTL) variants in the gene targets of metformin were identified in the GTEx project and eQTLGen consortium. We also obtained male-specific genome-wide association study data for type 2 diabetes, body mass index (BMI), total testosterone, bioavailable testosterone, estradiol, and sex hormone binding globulin for mediation analysis. Inverse-variance weighted (IVW) regression, weighted median, MR-Egger regression, and MR-PRESSO were performed in the main MR analysis. Multivariable MR was used to identify potential mediators and genetic colocalization analysis was performed to assess any shared genetic basis between two traits of interest. We found that genetically proxied metformin effects (1-SD HbA1c reduction, equivalent to 6.75 mmol/mol) were associated with higher risk of prostate cancer (odds ratioIVW [ORIVW]: 1.55, 95% confidence interval, CI: 1.23-1.96, p = 3.0 × 10-3). Two metformin targets, mitochondrial complex I (ORIVW: 1.48, 95% CI: 1.07-2.03, p = 0.016) and gamma-secretase complex (ORIVW: 2.58, 95%CI :1.47-4.55, p = 0.001), showed robust associations with prostate cancer risk, and their effects were partly mediated through BMI (16.4%) and total testosterone levels (34.3%), respectively. These results were further supported by colocalization analysis that expressions of NDUFA13 and BMI, APH1A, and total testosterone may be influenced by shared genetic factors, respectively. In summary, our study indicated that genetically proxied metformin effects may be associated with an increased risk of prostate cancer. Repurposing metformin for prostate cancer prevention in general populations is not supported by our findings.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Prostatic Neoplasms , Male , Humans , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Testosterone , Polymorphism, Single Nucleotide
15.
Cancer Causes Control ; 35(6): 897-906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38332239

ABSTRACT

PURPOSE: We aimed to characterize genetic correlations and causal associations between circulating C-reactive protein (CRP) levels and the risk of lung cancer (LC). METHODS: Leveraging summary statistics from genome-wide association studies of circulating CRP levels among 575,531 individuals of European ancestry, and LC risk among 29,266 cases and 56,450 controls, we investigated genetic associations of circulating CRP levels with the risk of overall lung cancer and its histological subtypes, by using linkage disequilibrium score (LDSC) regression and Mendelian randomization (MR) analyses. RESULTS: Significant positive genetic correlations between circulating CRP levels and the risk of LC and its histological subtypes were identified from LDSC regression, with correlation coefficients ranging from 0.12 to 0.26, and all false discovery adjusted p < 0.05. Univariable MR demonstrated a nominal association between CRP levels and an increased risk of lung squamous cell carcinoma (SCC) (inverse variance-weighted OR = 1.15, 95% CI 1.01-1.30). However, this association disappeared when multivariable MR included cigarettes per day and/or body mass index. By using our recently developed constrained maximum likelihood-based MR method, we identified significant associations of CRP levels with the risk of overall LC (OR 1.06, 95% CI 1.03-1.09), SCC (OR 1.06, 95% CI 1.02-1.09), and small cell lung cancer (SCLC, OR 1.09, 95% CI 1.03-1.15). Moreover, most univariable and multivariable MR analyses also revealed consistent CRP-SCLC associations. CONCLUSION: There may be a genetic and causal association between circulating CRP levels and the risk of SCLC, which is in line with previous population-based observational studies.


Subject(s)
C-Reactive Protein , Genome-Wide Association Study , Lung Neoplasms , Mendelian Randomization Analysis , Humans , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/epidemiology , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Risk Factors , Case-Control Studies , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Linkage Disequilibrium , Male , Female
16.
Chem Res Toxicol ; 37(2): 374-384, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38315500

ABSTRACT

Approximately 10% of smokers will develop lung cancer. Sensitive predictive biomarkers are needed to identify susceptible individuals. 1,3-Butadiene (BD) is among the most abundant tobacco smoke carcinogens. BD is metabolically activated to 3,4-epoxy-1-butene (EB), which is detoxified via the glutathione conjugation/mercapturic acid pathway to form monohydroxybutenyl mercapturic acid (MHBMA) and dihydroxybutyl mercapturic acid (DHBMA). Alternatively, EB can react with guanine nucleobases of DNA to form N7-(1-hydroxyl-3-buten-1-yl) guanine (EB-GII) adducts. We employed isotope dilution LC/ESI-HRMS/MS methodologies to quantify MHBMA, DHBMA, and EB-GII in urine of smokers who developed lung cancer (N = 260) and matched smoking controls (N = 259) from the Southern Community Cohort (white and African American). The concentrations of all three biomarkers were significantly higher in smokers that subsequently developed lung cancer as compared to matched smoker controls after adjusting for age, sex, and race/ethnicity (p < 0.0001 for EB-GII, p < 0.0001 for MHBMA, and p = 0.0007 for DHBMA). The odds ratio (OR) for lung cancer development was 1.63 for MHBMA, 1.37 for DHBMA, and 1.97 for EB-GII, with a higher OR in African American subjects than in whites. The association of urinary EB-GII, MHBMA, and DHBMA with lung cancer status did not remain upon adjustment for total nicotine equivalents. These findings reveal that urinary MHBMA, DHBMA, and EB-GII are directly correlated with the BD dose delivered via smoking and are associated with lung cancer risk.


Subject(s)
Lung Neoplasms , Tobacco Products , Humans , Smokers , Butadienes/metabolism , Acetylcysteine/metabolism , Lung Neoplasms/chemically induced , Guanine , Biomarkers/urine , DNA Adducts
17.
Gerontology ; 70(2): 134-142, 2024.
Article in English | MEDLINE | ID: mdl-37967546

ABSTRACT

INTRODUCTION: Theoretically, some metabolic traits may predispose older individuals to weight loss during aging, leading to increased all-cause mortality and many serious health issues. Biomarkers to robustly predict progressive weight loss during aging are, however, lacking. We prospectively assessed if urinary levels of F2-isoprostanes and their peroxisomal ß-oxidation metabolite, 2,3-dinor-5,6-dihydro-15-F2t-isoprostane (F2-IsoP-M), were associated with subsequent weight loss in middle-aged and older women. METHODS: Included in the analysis were 2,066 women aged 40-70 years, a subset of a prospective cohort study. F2-isoprostanes (F2-IsoPs) and its ß-oxidation metabolite, F2-IsoP-M, were measured in urine using gas chromatography-mass spectrometry. Measurements of anthropometry and exposures to major determinants of body weight were performed at baseline and repeated thrice over 15-year follow-up. The longitudinal associations of F2-IsoP-M and the F2-IsoP-M to its parent compound, F2-IsoP, ratio (MPR) with repeatedly measured weight changes were examined using linear mixed-effect models. RESULTS: After adjusting for time-varying covariates: energy intake, physical activity, and comorbidity index, among others, levels of F2-IsoP-M and the MPR were both inversely associated with percentage of weight change. Weight in the highest quartile of these two biomarkers was 1.33% (95% CI = -2.41, -0.24) and 1.09% (95% CI = -2.16, -0.02) lower than those in the lowest quartile group, with p for trend of 0.01 and 0.03, respectively. The inverse association was consistently seen across follow-up periods, although appearing stronger with prolonged follow-up. There was no association between the parent compound, F2-IsoPs, and weight change. CONCLUSION: This study demonstrates the first piece of evidence to associate F2-IsoP metabolism, peroxisomal ß-oxidation, with weight loss in older women. Further investigations into the role of lipid peroxidation and peroxisomal ß-oxidation in weight change among older individuals are warranted.


Subject(s)
F2-Isoprostanes , Oxidative Stress , Female , Humans , Middle Aged , Aged , F2-Isoprostanes/metabolism , Prospective Studies , Biomarkers/metabolism , Weight Loss
18.
Int J Cancer ; 152(4): 769-780, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36093581

ABSTRACT

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is mainly attributed to late diagnosis. We assessed the predictive performance of our previously reported urine biomarker panel for earlier detection of PDAC (LYVE1, REG1B and TFF1) in prediagnostic samples, alone and in combination with plasma CA19-9. This nested case-control study included 99 PDAC cases with urine samples prospectively collected up to 5 years prior to PDAC diagnosis and 198 matched controls. The samples were obtained from the Shanghai Women's Health Study (SWHS), the Shanghai Men's Health Studies (SMHS) and the Southern Community Cohort Study (SCCS). The urine biomarkers were measured by ELISA. Plasma CA19-9 was quantified by Luminex. Multiple logistic regression and Wilcoxon rank-sum and Mann-Whitney test were used for analysis. The internal validation approach was applied and the validated AUC estimators are reported on. The algorithm of urinary protein panel, urine creatinine and age named PancRISK, displayed similar AUC as CA19-9 up to 1 year before PDAC diagnosis (AUC = 0.79); however, the combination enhanced the AUCs to 0.89, and showed good discriminative ability (AUC = 0.77) up to 2 years. The combination showed sensitivity (SN) of 72% at 90% specificity (SP), and SP of 59% at 90% SN up to 1 year and 60% SN with 80% SP and 53% SP with 80% SN up to 2 years before PDAC diagnosis. Adding the clinical information on BMI value resulted in the overall improvement in performance of the PancRISK score. When combined with CA19-9, the urinary panel reached a workable model for detecting PDAC cases up to 2 years prior to diagnosis.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Male , Humans , Female , Case-Control Studies , CA-19-9 Antigen , Cohort Studies , Biomarkers, Tumor , China/epidemiology , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology
19.
Hum Mol Genet ; 30(5): 321-330, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33481017

ABSTRACT

Most genetic variants for colorectal cancer (CRC) identified in genome-wide association studies (GWAS) are located in intergenic regions, implying pathogenic dysregulations of gene expression. However, comprehensive assessments of target genes in CRC remain to be explored. We conducted a multi-omics analysis using transcriptome and/or DNA methylation data from the Genotype-Tissue Expression, The Cancer Genome Atlas and the Colonomics projects. We identified 116 putative target genes for 45 GWAS-identified variants. Using summary-data-based Mendelian randomization approach (SMR), we demonstrated that the CRC susceptibility for 29 out of the 45 CRC variants may be mediated by cis-effects on gene regulation. At a cutoff of the Bonferroni-corrected PSMR < 0.05, we determined 66 putative susceptibility genes, including 39 genes that have not been previously reported. We further performed in vitro assays for two selected genes, DIP2B and SFMBT1, and provide functional evidence that they play a vital role in colorectal carcinogenesis via disrupting cell behavior, including migration, invasion and epithelial-mesenchymal transition. Our study reveals a large number of putative novel susceptibility genes and provides additional insight into the underlying mechanisms for CRC genetic risk loci.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Repressor Proteins/genetics , Transcriptome , Cell Line, Tumor , Cell Proliferation , DNA Methylation , Gene Expression Regulation, Neoplastic , Genome , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Risk Factors
20.
Br J Cancer ; 129(4): 626-635, 2023 09.
Article in English | MEDLINE | ID: mdl-37400676

ABSTRACT

BACKGROUND: Although tobacco smoking is the leading cause of lung cancer, interest in the relationship of diet quality on risk has been growing. METHODS: We examined the association between Healthy Eating Index-2010 (HEI-10) at enrollment and lung cancer incidence among 70,802 participants in a predominantly African American and low-income prospective cohort in the southern United States. Outcomes were ascertained through linkages with state cancer registries and the National Death Index (NDI). Hazard ratios by HEI-10 quartiles were assessed using Cox proportional hazard models adjusted for potential confounders. RESULTS: During ≤16 years of follow-up, 1454 incident lung cancers were identified. The lowest HEI-10 quartile compared to the highest was adversely associated with lung cancer risk (HR: 1.89, 95% CI 1.16-3.07) among male former smokers and female never smokers (HR: 2.58, 95% CI 1.06-6.28). CONCLUSIONS: Low-quality diet was associated with increased lung cancer risk among male former smokers and female never smokers but cautious interpretation of the findings should be taken due to the small number of lung cancers among never smokers and the possibility of residual confounding by smoking in ever smokers.


Subject(s)
Diet , Lung Neoplasms , Humans , Male , United States/epidemiology , Female , Risk Factors , Prospective Studies , Incidence , Diet/adverse effects , Poverty , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Proportional Hazards Models
SELECTION OF CITATIONS
SEARCH DETAIL