Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 23(8): 3630-3636, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-36847547

ABSTRACT

The discontinuous interfacial contact of solid-state polymer metal batteries is due to the stress changes in the electrode structure during cycling, resulting in poor ion transport. Herein, a rigid-flexible coupled interface stress modulation strategy is developed to solve the above issues, which is to design a rigid cathode with enhanced solid-solution behavior to guide the uniform distribution of ions and electric field. Meanwhile, the polymer components are optimized to build an organic-inorganic blended flexible interfacial film to relieve the change of interfacial stress and ensure rapid ion transmission. The fabricated battery comprising a Co-modulated P2-type layered cathode (Na0.67Mn2/3Co1/3O2) and a high ion conductive polymer could deliver good cycling stability without distinct capacity fading (72.8 mAh g-1 over 350 cycles at 1 C), outperforming those without Co modulation or interfacial film construction. This work demonstrates a promising rigid-flexible coupled interfacial stress modulation strategy for polymer-metal batteries with excellent cycling stability.

2.
Commun Biol ; 7(1): 715, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858498

ABSTRACT

In cryo-electron microscopy (cryo-EM), sample preparation poses a critical bottleneck, particularly for rare or fragile macromolecular assemblies and those suffering from denaturation and particle orientation distribution issues related to air-water interface. In this study, we develop and characterize an immobilized antibody-based affinity grid (IAAG) strategy based on the high-affinity PA tag/NZ-1 antibody epitope tag system. We employ Pyr-NHS as a linker to immobilize NZ-1 Fab on the graphene oxide or carbon-covered grid surface. Our results demonstrate that the IAAG grid effectively enriches PA-tagged target proteins and overcomes preferred orientation issues. Furthermore, we demonstrate the utility of our IAAG strategy for on-grid purification of low-abundance target complexes from cell lysates, enabling atomic resolution cryo-EM. This approach greatly streamlines the purification process, reduces the need for large quantities of biological samples, and addresses common challenges encountered in cryo-EM sample preparation. Collectively, our IAAG strategy provides an efficient and robust means for combined sample purification and vitrification, feasible for high-resolution cryo-EM. This approach holds potential for broader applicability in both cryo-EM and cryo-electron tomography (cryo-ET).


Subject(s)
Antibodies, Immobilized , Cryoelectron Microscopy , Cryoelectron Microscopy/methods , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Graphite/chemistry , Humans
3.
ACS Appl Mater Interfaces ; 15(34): 40469-40477, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37584375

ABSTRACT

Sodium-ion batteries, as an attractive option for large-scale energy storage, still face the problems of low energy density and unsatisfactory rate performance. Among various cathodes, the tunnel-type Na0.44MnO2 with large S-shaped Na+ transport tunnels is one of the promising cathode materials for fast and robust sodium-ion storage, yet suffering from Mn dissolution and structural collapse. Herein, a Na-rich layered oxide Na2TiO3 is first constructed as a multifunctional coating layer on the surface of the Na0.44MnO2 nanorod. Na2TiO3 not only acts as an Na+ reservoir, but also serves as a protective layer to prevent Na0.44MnO2 from electrolyte etching. Besides, the derived Ti-doped Na0.44MnO2 transition layer supplies additional Na+ diffusion pathways along the radial direction of the nanorod with a short migration distance. The optimized 3 wt % Na2TiO3-coated Na0.44MnO2 exhibits enhanced an initial capacity of 127 mAh g-1 at 2-4.5 V. In addition, it shows an ultra-high capacitive-like capacity ratio of 96.7%, hence delivering an excellent rate performance of 80.2 mAh g-1 at 20C. Long-term cycling tests indicate splendid stability against high voltage, achieving 97.7% capacity retention at 20C after 900 cycles. This work provides an effective strategy to improve the rate performance and high-voltage stability of Na0.44MnO2 for high energy and power density batteries.

4.
Nanomicro Lett ; 16(1): 10, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943381

ABSTRACT

Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost. Nevertheless, such cathodes usually suffer from phase transitions, sluggish kinetics and air instability, making it difficult to achieve high performance solid-state sodium-ion batteries. Herein, the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity, achieving high-rate performance, air stability and electrochemically thermal stability for Na0.95Li0.06Ni0.25Cu0.05Fe0.15Mn0.49O2. This cathode delivers a high reversible capacity (141 mAh g-1 at 0.2C), excellent rate capability (111 mAh g-1 at 8C, 85 mAh g-1 even at 20C), and long-term stability (over 85% capacity retention after 1000 cycles), which is attributed to a rapid and reversible O3-P3 phase transition in regions of low voltage and suppresses phase transition. Moreover, the compound remains unchanged over seven days and keeps thermal stability until 279 ℃. Remarkably, the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g-1 at 5C and keeps retention of 96% after 400 cycles. This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.

5.
Dalton Trans ; 51(33): 12532-12539, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35912983

ABSTRACT

LiTMPO4 materials, such as LiNiPO4, can maintain structural stability and Li+ transport activity up to 4.8 V, showing great potential to stabilize layered nickel-rich cathodes at high voltage. But achieving a uniform LiTMPO4 coating layer remains a great challenge. Herein, an ultrathin and uniform LiTMPO4 layer (mainly LiNiPO4) is successfully coated on the surface of LiNi0.8Co0.15Mn0.05O2 (NMC@LTMP) via utilizing the surface chelation of phytic acid with NMC precursors and a subsequent high-temperature in situ reaction. The reconstructed surface and interface could act as stable paths for Li+ transport and efficient barriers against electrolyte corrosion. Thus, harmful side reactions like solid electrolyte interphase overgrowth, irreversible phase transformation, and metal dissolution are inhibited simultaneously. Impressively, the optimized NMC@LTMP2 cathode exhibits remarkably improved capacity, as high as 215 mA h g-1 at 2.8-4.5 V, with capacity retention of 87.21% after 200 cycles and outstanding rate capability of 140 mA h g-1 at 10C, significantly better than a pristine cathode. Furthermore, a pouch cell assembled with an NMC@LTMP2 cathode and graphite anode also exhibits robust capacity retention of 82.42% after 100 cycles. These results provide useful insights towards enabling the application of NMC cathodes via developing facile modification methods.

SELECTION OF CITATIONS
SEARCH DETAIL