Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
EMBO J ; 39(7): e102008, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32115743

ABSTRACT

Deposition of H2A.Z in chromatin is known to be mediated by a conserved SWR1 chromatin-remodeling complex in eukaryotes. However, little is known about whether and how the SWR1 complex cooperates with other chromatin regulators. Using immunoprecipitation followed by mass spectrometry, we found all known components of the Arabidopsis thaliana SWR1 complex and additionally identified the following three classes of previously uncharacterized plant-specific SWR1 components: MBD9, a methyl-CpG-binding domain-containing protein; CHR11 and CHR17 (CHR11/17), ISWI chromatin remodelers responsible for nucleosome sliding; and TRA1a and TRA1b, accessory subunits of the conserved NuA4 histone acetyltransferase complex. MBD9 directly interacts with CHR11/17 and the SWR1 catalytic subunit PIE1, and is responsible for the association of CHR11/17 with the SWR1 complex. MBD9, TRA1a, and TRA1b function as canonical components of the SWR1 complex to mediate H2A.Z deposition. CHR11/17 are not only responsible for nucleosome sliding but also involved in H2A.Z deposition. These results indicate that the association of the SWR1 complex with CHR11/17 may facilitate the coupling of H2A.Z deposition with nucleosome sliding, thereby co-regulating gene expression, development, and flowering time.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Histones/metabolism , Adenosine Triphosphatases/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , Histone Acetyltransferases/metabolism , Nucleosomes/metabolism , Protein Interaction Maps , Transcription Factors/metabolism
2.
Plant Cell ; 33(10): 3250-3271, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34270751

ABSTRACT

In the INO80 chromatin remodeling complex, all of the accessory subunits are assembled on the following three domains of INO80: N-terminal domain (NTD), HSA domain, and ATPase domain. Although the ATPase and HSA domains and their interacting accessory subunits are known to be responsible for chromatin remodeling, it is largely unknown how the accessory subunits that interact with the INO80 NTD regulate chromatin status. Here, we identify both conserved and nonconserved accessory subunits that interact with the three domains in the INO80 complex in Arabidopsis thaliana. While the accessory subunits that interact with all the three INO80 domains can mediate transcriptional repression, the INO80 NTD and the accessory subunits interact with it can contribute to transcriptional activation even when the ATPase domain is absent, suggesting that INO80 has an ATPase-independent role. A subclass of the COMPASS histone H3K4 methyltransferase complexes interact with the INO80 NTD in the INO80 complex and function together with the other accessory subunits that interact with the INO80 NTD, thereby facilitating H3K4 trimethylation and transcriptional activation. This study suggests that the opposite effects of the INO80 complex on transcription are required for the balance between vegetative growth and flowering under diverse environmental conditions.


Subject(s)
Adenosine Triphosphatases/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Histones/metabolism , Adenosine Triphosphatases/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Methylation
3.
Nucleic Acids Res ; 50(13): 7380-7395, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35766439

ABSTRACT

Although previous studies have identified several autonomous pathway components that are required for the promotion of flowering, little is known about how these components cooperate. Here, we identified an autonomous pathway complex (AuPC) containing both known components (FLD, LD and SDG26) and previously unknown components (EFL2, EFL4 and APRF1). Loss-of-function mutations of all of these components result in increased FLC expression and delayed flowering. The delayed-flowering phenotype is independent of photoperiod and can be overcome by vernalization, confirming that the complex specifically functions in the autonomous pathway. Chromatin immunoprecipitation combined with sequencing indicated that, in the AuPC mutants, the histone modifications (H3Ac, H3K4me3 and H3K36me3) associated with transcriptional activation are increased, and the histone modification (H3K27me3) associated with transcriptional repression is reduced, suggesting that the AuPC suppresses FLC expression at least partially by regulating these histone modifications. Moreover, we found that the AuPC component SDG26 associates with FLC chromatin via a previously uncharacterized DNA-binding domain and regulates FLC expression and flowering time independently of its histone methyltransferase activity. Together, these results provide a framework for understanding the molecular mechanism by which the autonomous pathway regulates flowering time.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Mutation
4.
Plant Cell ; 32(7): 2178-2195, 2020 07.
Article in English | MEDLINE | ID: mdl-32358072

ABSTRACT

Chromatin remodeling and histone modifications are important for development and floral transition in plants. However, it is largely unknown whether and how these two epigenetic regulators coordinately regulate the important biological processes. Here, we identified three types of Imitation Switch (ISWI) chromatin-remodeling complexes in Arabidopsis (Arabidopsis thaliana). We found that AT-RICH INTERACTING DOMAIN5 (ARID5), a subunit of a plant-specific ISWI complex, can regulate development and floral transition. The ARID-PHD dual domain cassette of ARID5 recognizes both the H3K4me3 histone mark and AT-rich DNA. We determined the ternary complex structure of the ARID5 ARID-PHD cassette with an H3K4me3 peptide and an AT-containing DNA. The H3K4me3 peptide is combinatorially recognized by the PHD and ARID domains, while the DNA is specifically recognized by the ARID domain. Both PHD and ARID domains are necessary for the association of ARID5 with chromatin. The results suggest that the dual recognition of AT-rich DNA and H3K4me3 by the ARID5 ARID-PHD cassette may facilitate the association of the ISWI complex with specific chromatin regions to regulate development and floral transition.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , DNA-Binding Proteins/genetics , Flowers/physiology , Histones/metabolism , Arabidopsis Proteins/metabolism , Chromatin Assembly and Disassembly , Crystallography, X-Ray , DNA, Plant/genetics , DNA, Plant/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Histones/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Plants, Genetically Modified , Protein Domains
5.
Plant J ; 107(2): 467-479, 2021 07.
Article in English | MEDLINE | ID: mdl-33942410

ABSTRACT

Association of RNA polymerase V (Pol V) with chromatin is a critical step for RNA- directed DNA methylation (RdDM) in plants. Although the methylated DNA-binding proteins SUVH2 and SUVH9 and the chromatin remodeler-containing complex DRD1-DMS3-RDM1 are known to be required for the association of Pol V with chromatin, the molecular mechanisms underlying the association of Pol V with different chromatin environments remain largely unknown. Here we found that SUVH9 interacts with FVE, a homolog of the mammalian retinoblastoma-associated protein, which has been previously identified as a shared subunit of the histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci. Compared with FVE-independent RdDM target loci, FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than in pericentromeric heterochromatin regions. This study contributes to our understanding of how the association of Pol V with chromatin is regulated in different chromatin environments.


Subject(s)
Arabidopsis Proteins/physiology , Chromatin/metabolism , DNA Methylation , DNA-Directed RNA Polymerases/metabolism , Transcription Factors/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Immunoprecipitation , RNA Interference , Seedlings/metabolism , Transcription Factors/metabolism
6.
New Phytol ; 233(2): 751-765, 2022 01.
Article in English | MEDLINE | ID: mdl-34724229

ABSTRACT

FLOWERING LOCUS M (FLM) is a well-known MADS-box transcription factor that is required for preventing early flowering under low temperatures in Arabidopsis thaliana. Alternative splicing of FLM is involved in the regulation of temperature-responsive flowering. However, how the basic transcript level of FLM is regulated is largely unknown. Here, we conducted forward genetic screening and identified a previously uncharacterized flowering repressor gene, UBA2c. Genetic analyses indicated that UBA2c represses flowering at least by promoting FLM transcription. We further demonstrated that UBA2c directly binds to FLM chromatin and facilitates FLM transcription by inhibiting histone H3K27 trimethylation, a histone marker related to transcriptional repression. UBA2c encodes a protein containing two putative RNA recognition motifs (RRMs) and one prion-like domain (PrLD). We found that UBA2c forms speckles in the nucleus and that both the RRMs and PrLD are required not only for forming the nuclear speckles but also for the biological function of UBA2c. These results identify a previously unknown flowering repressor and provide insights into the regulation of flowering time.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/physiology , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , RNA Recognition Motif
7.
J Integr Plant Biol ; 64(12): 2438-2454, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36354145

ABSTRACT

Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3K4 methylation in Arabidopsis thaliana, it is unknown whether and how these histone methyltransferases affect DNA methylation. Here, we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation. The expression and H3K4me3 levels of both RNA-directed DNA methylation (RdDM) genes (NRPE1, DCL3, IDN2, and IDP2) and active DNA demethylation genes (ROS1, DML2, and DML3) were downregulated in the atx1/2/4/5 mutant. Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites, and that the RdDM pathway mediates DNA methylation mainly at CHH sites, whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3 (rdd), and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1, suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3K4me3 levels and expression levels of both RdDM genes and active DNA demethylation genes. Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes, we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation. This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Glycosylases , Arabidopsis/genetics , Arabidopsis/metabolism , DNA Methylation/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Proto-Oncogene Proteins/genetics , Gene Expression Regulation, Plant , Methyltransferases/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/metabolism
8.
J Integr Plant Biol ; 63(4): 755-771, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33325122

ABSTRACT

In eukaryotes, MEDIATOR is a conserved multi-subunit complex that links transcription factors and RNA polymerase II and that thereby facilitates transcriptional initiation. Although the composition of MEDIATOR has been well studied in yeast and mammals, relatively little is known about the composition of MEDIATOR in plants. By affinity purification followed by mass spectrometry, we identified 28 conserved MEDIATOR subunits in Arabidopsis thaliana, including putative MEDIATOR subunits that were not previously validated. Our results indicated that MED34, MED35, MED36, and MED37 are not Arabidopsis MEDIATOR subunits, as previously proposed. Our results also revealed that two homologous CBP/p300 histone acetyltransferases, HAC1 and HAC5 (HAC1/5) are in fact plant-specific MEDIATOR subunits. The MEDIATOR subunits MED8 and MED25 (MED8/25) are partially responsible for the association of MEDIATOR with HAC1/5, MED8/25 and HAC1/5 co-regulate gene expression and thereby affect flowering time and floral development. Our in vitro observations indicated that MED8 and HAC1 form liquid-like droplets by phase separation, and our in vivo observations indicated that these droplets co-localize in the nuclear bodies at a subset of nuclei. The formation of liquid-like droplets is required for MED8 to interact with RNA polymerase II. In summary, we have identified all of the components of Arabidopsis MEDIATOR and revealed the mechanism underlying the link of histone acetylation and transcriptional regulation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/metabolism , Plants, Genetically Modified/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arsenate Reductases/genetics , Arsenate Reductases/metabolism , Flowers/genetics , Gene Expression Regulation, Plant , Histones/genetics , Histones/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Plants, Genetically Modified/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
9.
J Integr Plant Biol ; 62(11): 1703-1716, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32396248

ABSTRACT

Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi-subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead-associated domain 2 (FHA2) as a plant-specific subunit of an ISWI chromatin-remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early-flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA-seq analysis indicated that the fha2 mutant affects a subset of RLT1/2-regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/metabolism , Nuclear Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Nuclear Proteins/genetics , Nucleosomes/metabolism , Plant Infertility/genetics , Plant Infertility/physiology
10.
Nat Plants ; 9(3): 442-459, 2023 03.
Article in English | MEDLINE | ID: mdl-36879016

ABSTRACT

Although a conserved SAGA complex containing the histone acetyltransferase GCN5 is known to mediate histone acetylation and transcriptional activation in eukaryotes, how to maintain different levels of histone acetylation and transcription at the whole-genome level remains to be determined. Here we identify and characterize a plant-specific GCN5-containing complex, which we term PAGA, in Arabidopsis thaliana and Oryza sativa. In Arabidopsis, the PAGA complex consists of two conserved subunits (GCN5 and ADA2A) and four plant-specific subunits (SPC, ING1, SDRL and EAF6). We find that PAGA and SAGA can independently mediate moderate and high levels of histone acetylation, respectively, thereby promoting transcriptional activation. Moreover, PAGA and SAGA can also repress gene transcription via the antagonistic effect between PAGA and SAGA. Unlike SAGA, which regulates multiple biological processes, PAGA is specifically involved in plant height and branch growth by regulating the transcription of hormone biosynthesis and response related genes. These results reveal how PAGA and SAGA cooperate to regulate histone acetylation, transcription and development. Given that the PAGA mutants show semi-dwarf and increased branching phenotypes without reduction in seed yield, the PAGA mutations could potentially be used for crop improvement.


Subject(s)
Histone Acetyltransferases , Histones , Histones/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Cell Nucleus/metabolism , Plants/genetics , Transcription, Genetic , Plant Development , Acetylation
11.
Nat Plants ; 8(12): 1423-1439, 2022 12.
Article in English | MEDLINE | ID: mdl-36471048

ABSTRACT

Although SWI/SNF chromatin remodelling complexes are known to regulate diverse biological functions in plants, the classification, compositions and functional mechanisms of the complexes remain to be determined. Here we comprehensively characterized SWI/SNF complexes by affinity purification and mass spectrometry in Arabidopsis thaliana, and found three classes of SWI/SNF complexes, which we termed BAS, SAS and MAS (BRM-, SYD- and MINU1/2-associated SWI/SNF complexes). By investigating multiple developmental phenotypes of SWI/SNF mutants, we found that three classes of SWI/SNF complexes have both overlapping and specific functions in regulating development. To investigate how the three classes of SWI/SNF complexes differentially regulate development, we mapped different SWI/SNF components on chromatin at the whole-genome level and determined their effects on chromatin accessibility. While all three classes of SWI/SNF complexes regulate chromatin accessibility at proximal promoter regions, SAS is a major SWI/SNF complex that is responsible for mediating chromatin accessibility at distal promoter regions and intergenic regions. Histone modifications are related to both the association of SWI/SNF complexes with chromatin and the SWI/SNF-dependent chromatin accessibility. Three classes of SWI/SNF-dependent accessibility may enable different sets of transcription factors to access chromatin. These findings lay a foundation for further investigation of the function of three classes of SWI/SNF complexes in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Chromatin Assembly and Disassembly , Transcription Factors/metabolism , Chromatin , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Adenosine Triphosphatases/metabolism
12.
J Genet Genomics ; 48(5): 369-383, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34144927

ABSTRACT

The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes, but whether they form other types of complexes is unknown. Here, we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins, thereby forming three types of plant-specific histone deacetylase complexes, which we named SANT, ESANT, and ARID. RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes. HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation. We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and -independent mechanisms. In the mutants of histone deacetylase complexes, the expression of a number of stress-induced genes is up-regulated, and several mutants of the histone deacetylase complexes show severe retardation in growth. Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance, we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.


Subject(s)
Arabidopsis/physiology , Histone Deacetylases/metabolism , Multiprotein Complexes/metabolism , Stress, Physiological , Acetylation , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Heterochromatin/genetics , Heterochromatin/metabolism , Histone Deacetylases/genetics , Histones/metabolism , Phenotype , Protein Interaction Mapping , Protein Interaction Maps
13.
Mol Plant ; 14(7): 1071-1087, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33737195

ABSTRACT

The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an evolutionarily conserved histone acetyltransferase complex that has a critical role in histone acetylation, gene expression, and various developmental processes in eukaryotes. However, little is known about the composition and function of the SAGA complex in plants. In this study, we found that the SAGA complex in Arabidopsis thaliana contains not only conserved subunits but also four plant-specific subunits: three functionally redundant paralogs, SCS1, SCS2A, and SCS2B (SCS1/2A/2B), and a TAF-like subunit, TAFL. Mutations in SCS1/2A/2B lead to defective phenotypes similar to those caused by mutations in the genes encoding conserved SAGA subunits HAG1 and ADA2B, including delayed juvenile-to-adult phase transition, late flowering, and increased trichome density. Furthermore, we demonstrated that SCS1/2A/2B are required for the function of the SAGA complex in histone acetylation, thereby promoting the transcription of development-related genes. These results together suggest that SCS1/2A/2B are core subunits of the SAGA complex in Arabidopsis. Compared with SAGA complexes in other eukaryotes, the SAGA complexes in plants have evolved unique features that are necessary for normal growth and development.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Histone Acetyltransferases/metabolism , Protein Subunits/analysis , Arabidopsis Proteins/metabolism , Conserved Sequence , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Plants, Genetically Modified , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL