ABSTRACT
Increasing evidence suggests that cannabinoid receptor 2 (CB2R) serves as a promising anti-inflammatory target. While inflammation is known to play crucial roles in the pathogenesis of epilepsy, the involvement of CB2R in epilepsy remains unclear. This study aimed to investigate the effects of a CB2R agonist, AM1241, on epileptic seizures and depressive-like behaviors in a mouse model of chronic epilepsy induced by pilocarpine. A chronic epilepsy mouse model was established by intraperitoneal administration of pilocarpine. The endogenous cannabinoid system (eCBs) in the hippocampus was examined after status epilepticus (SE). Animals were then treated with AM1241 and compared with a vehicle-treated control group. Additionally, the role of the AMPK/NLRP3 signaling pathway was explored using the selective AMPK inhibitor dorsomorphin. Following SE, CB2R expression increased significantly in hippocampal microglia. Administration of AM1241 significantly reduced seizure frequency, immobility time in the tail suspension test, and neuronal loss in the hippocampus. In addition, AM1241 treatment attenuated microglial activation, inhibited pro-inflammatory polarization of microglia, and suppressed NLRP3 inflammasome activation in the hippocampus after SE. Further, the therapeutic effects of AM1241 were abolished by the AMPK inhibitor dorsomorphin. Our findings suggest that CB2R agonist AM1241 may alleviate epileptic seizures and its associated depression by inhibiting neuroinflammation through the AMPK/NLRP3 signaling pathway. These results provide insight into a novel therapeutic approach for epilepsy.
Subject(s)
Depression , Disease Models, Animal , Hippocampus , Pilocarpine , Receptor, Cannabinoid, CB2 , Seizures , Animals , Male , Mice , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Depression/etiology , Depression/drug therapy , Depression/metabolism , Epilepsy/metabolism , Epilepsy/drug therapy , Epilepsy/chemically induced , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Seizures/metabolism , Seizures/drug therapyABSTRACT
Extended synaptotagmins (E-Syts) mediate lipid exchange between the endoplasmic reticulum (ER) and the plasma membrane (PM). Anchored on the ER, E-Syts bind the PM via an array of C2 domains in a Ca2+- and lipid-dependent manner, drawing the two membranes close to facilitate lipid exchange. How these C2 domains bind the PM and regulate the ER-PM distance is not well understood. Here, we applied optical tweezers to dissect PM binding by E-Syt1 and E-Syt2. We detected Ca2+- and lipid-dependent membrane-binding kinetics of both E-Syts and determined the binding energies and rates of individual C2 domains or pairs. We incorporated these parameters in a theoretical model to recapitulate salient features of E-Syt-mediated membrane contacts observed in vivo, including their equilibrium distances and probabilities. Our methods can be applied to study other proteins containing multiple membrane-binding domains linked by disordered polypeptides.
Subject(s)
Calcium , Optical Tweezers , Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Lipids/analysisABSTRACT
The multimeric membrane-tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here, we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide-binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact directly with Ypt1p to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This view of a multimeric membrane-tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.
Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism , Enzyme Activation , Golgi Apparatus/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Models, Molecular , Protein Interaction Mapping , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics , rab GTP-Binding Proteins/chemistryABSTRACT
OBJECTIVES: Automated seizure detection modalities can increase safety among people with epilepsy (PWE) and reduce seizure-related anxiety. We evaluated the potential cost-effectiveness of a seizure detection mobile application for PWE in Singapore. METHODS: We used a Markov cohort model to estimate the expected changes to total costs and health outcomes from a decision to adopt the seizure detection application versus the current standard of care from the health provider perspective. The time horizon is ten years and cycle duration is one month. Parameter values were updated from national databases and published literature. As we do not know the application efficacy in reducing seizure-related injuries, a conservative estimate of 1% reduction was used. Probabilistic sensitivity analysis, scenario analyses, and value of information analysis were performed. RESULTS: At a willingness-to-pay of $45,000/ quality-adjusted life-years (QALY), the incremental cost-effectiveness ratio was $1,096/QALY, and the incremental net monetary benefit was $13,656. Probabilistic sensitivity analyses reported that the application had a 99.5% chance of being cost-effective. In a scenario analysis in which the reduction in risk of seizure-related injury was 20%, there was a 99.8% chance that the application was cost-effective. Value of information analysis revealed that health utilities was the most important parameter group contributing to model uncertainty. CONCLUSIONS: This early-stage modeling study reveals that the seizure detection application is likely to be cost-effective compared to current standard of care. Future prospective trials will be needed to demonstrate the real-world impact of the application. Changes in health-related quality of life should also be measured in future trials.
Subject(s)
Epilepsy , Quality of Life , Humans , Cost-Benefit Analysis , Epilepsy/diagnosis , Seizures/diagnosis , Quality-Adjusted Life YearsABSTRACT
OBJECTIVES: To report the processes used to design and implement an assessment tool to inform funding decisions for competing health innovations in a tertiary hospital. METHODS: We designed an assessment tool for health innovation proposals with three components: "value to the institution," "novelty," and "potential for adoption and scaling." The "value to the institution" component consisted of twelve weighted value attributes identified from the host institution's annual report; weights were allocated based on a survey of the hospital's leaders. The second and third components consisted of open-ended questions on "novelty" and "barriers to implementation" to support further dialogue. Purposive literature review was performed independently by two researchers for each assessment. The assessment tool was piloted during an institutional health innovation funding cycle. RESULTS: We used 17 days to evaluate ten proposals. The completed assessments were shared with an independent group of panellists, who selected five projects for funding. Proposals with the lowest scores for "value to the institution" had less perceived impact on the patient-related value attributes of "access," "patient centeredness," "health outcomes," "prevention," and "safety." Similar innovations were reported in literature in seven proposals; potential barriers to implementation were identified in six proposals. We included a worked example to illustrate the assessment process. CONCLUSIONS: We developed an assessment tool that is aligned with local institutional priorities. Our tool can augment the decision-making process when funding health innovation projects. The tool can be adapted by others facing similar challenges of trying to choose the best health innovations to fund.
Subject(s)
Academic Medical Centers , Humans , Surveys and QuestionnairesABSTRACT
BACKGROUND: Apoptosis signal-regulating kinase 1 (ASK1) not only causes neuronal programmed cell death via the mitochondrial pathway but also is an essential component of the signalling cascade during microglial activation. We hypothesize that ASK1 selective deletion modulates inflammatory responses in microglia/macrophages(Mi/MÏ) and attenuates seizure severity and long-term cognitive impairments in an epileptic mouse model. METHODS: Mi/MÏ-specific ASK1 conditional knockout (ASK1 cKO) mice were obtained for experiments by mating ASK1flox/flox mice with CX3CR1creER mice with tamoxifen induction. Epileptic seizures were induced by intrahippocampal injection of kainic acid (KA). ASK1 expression and distribution were detected by western blotting and immunofluorescence staining. Seizures were monitored for 24 h per day with video recordings. Cognition, social and stress related activities were assessed with the Y maze test and the three-chamber social novelty preference test. The heterogeneous Mi/MÏ status and inflammatory profiles were assessed with immunofluorescence staining and real-time polymerase chain reaction (q-PCR). Immunofluorescence staining was used to detect the proportion of Mi/MÏ in contact with apoptotic neurons, as well as neuronal damage. RESULTS: ASK1 was highly expressed in Mi/MÏ during the acute phase of epilepsy. Conditional knockout of ASK1 in Mi/MÏ markedly reduced the frequency of seizures in the acute phase and the frequency of spontaneous recurrent seizures (SRSs) in the chronic phase. In addition, ASK1 conditional knockout mice displayed long-term neurobehavioral improvements during the Y maze test and the three-chamber social novelty preference test. ASK1 selective knockout mitigated neuroinflammation, as evidenced by lower levels of Iba1+/CD16+ proinflammatory Mi/MÏ. Conditional knockout of ASK1 increased Mi/MÏ proportion in contact with apoptotic neurons. Neuronal loss was partially restored by ASK1 selective knockout. CONCLUSION: Conditional knockout of ASK1 in Mi/MÏ reduced seizure severity, neurobehavioral impairments, and histological damage, at least via inhibiting proinflammatory microglia/macrophages responses. ASK1 in microglia/macrophages is a potential therapeutic target for inflammatory responses in epilepsy.
Subject(s)
Epilepsy , Microglia , Animals , Epilepsy/chemically induced , Epilepsy/genetics , Epilepsy/metabolism , Kainic Acid/toxicity , Macrophages , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Seizures/chemically induced , Seizures/genetics , Seizures/metabolismABSTRACT
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα's role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.
Subject(s)
Hereditary Central Nervous System Demyelinating Diseases/genetics , Intestinal Atresia/genetics , Minor Histocompatibility Antigens/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Primary Immunodeficiency Diseases/genetics , Female , Humans , Male , Pedigree , Polymorphism, Single NucleotideABSTRACT
Close appositions between the endoplasmic reticulum (ER) and the plasma membrane (PM) are a general feature of all cells and are abundant in neurons. A function of these appositions is lipid transport between the two adjacent bilayers via tethering proteins that also contain lipid transport modules. However, little is known about the properties and dynamics of these proteins in neurons. Here we focused on TMEM24/C2CD2L, an ER-localized SMP domain containing phospholipid transporter expressed at high levels in the brain, previously shown to be a component of ER-PM contacts in pancreatic ß-cells. TMEM24 is enriched in neurons versus glial cells and its levels increase in parallel with neuronal differentiation. It populates ER-PM contacts in resting neurons, but elevations of cytosolic Ca2+ mediated by experimental manipulations or spontaneous activity induce its transient redistribution throughout the entire ER. Dissociation of TMEM24 from the plasma membrane is mediated by phosphorylation of an array of sites in the C-terminal region of the protein. These sites are only partially conserved in C2CD2, the paralogue of TMEM24 primarily expressed in nonneuronal tissues, which correspondingly display a much lower sensitivity to Ca2+ elevations. ER-PM contacts in neurons are also sites where Kv2 (the major delayed rectifier K+ channels in brain) and other PM and ER ion channels are concentrated, raising the possibility of a regulatory feedback mechanism between neuronal excitability and lipid exchange between the ER and the PM.
Subject(s)
Calcium Signaling/physiology , Membrane Proteins/metabolism , Neurons/physiology , Animals , Calcium/metabolism , Calcium Channels/metabolism , Cell Line , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Humans , Lipids , Mammals/metabolism , Membrane Proteins/physiology , Mice , Neurons/metabolism , Phospholipids/metabolism , Phosphorylation , Primary Cell Culture , Synaptotagmins/metabolismABSTRACT
The increase of carbapenem-resistant Enterobacterales (CRE) and lack of therapeutic options due to the scarcity of new antibiotics has sparked interest toward the use of intravenous fosfomycin against systemic CRE infections. We aimed to investigate the in vitro pharmacodynamics of fosfomycin against carbapenem-resistant Enterobacter cloacae and Klebsiella aerogenes Time-kill studies and population analysis profiles were performed with eight clinical CRE isolates, which were exposed to fosfomycin concentrations ranging from 0.25 to 2,048 mg/liter. The 24-h mean killing effect was characterized by an inhibitory sigmoid maximum effect (Emax) model. Whole-genome sequencing was performed to elucidate known fosfomycin resistance mechanisms. Fosfomycin MICs ranged from 0.5 to 64 mg/liter. The isolates harbored a variety of carbapenemase genes including blaIMP, blaKPC, and blaNDM Five out of eight isolates harbored the fosA gene, while none harbored the recently discovered fosL-like gene. Heteroresistant subpopulations were detected in all isolates, with two out of eight isolates harboring heteroresistant subpopulations at up to 2,048 mg/liter. In time-kill studies, fosfomycin exhibited bactericidal activity at 2 to 4 h at several fosfomycin concentrations (one isolate at ≥16 mg/liter, two at ≥32 mg/liter, two at ≥64 mg/liter, two at ≥128 mg/liter, and one at ≥512 mg/liter). At 24 h, bactericidal activity was only observed in two isolates (MICs, 0.5 and 4 mg/liter) at 2,048 mg/liter. From the Emax model, no significant bacterial killing was observed beyond 500 mg/liter. Our findings suggest that the use of fosfomycin monotherapy may be limited against CRE due to heteroresistance and rapid bacterial regrowth. Further optimization of intravenous fosfomycin dosing regimens is required to increase efficacy against such infections.
Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacter aerogenes , Fosfomycin , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Enterobacter cloacae/genetics , Fosfomycin/pharmacology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , beta-Lactamases/geneticsABSTRACT
Polymyxin B-based combinations are increasingly prescribed as a last-line option against extensively drug-resistant (XDR) Acinetobacter baumannii It is unknown if such combinations can result in the development of nondividing persister cells in XDR A. baumannii We investigated persister development upon exposure of XDR A. baumannii to polymyxin B-based antibiotic combinations using flow cytometry. Time-kill studies (TKSs) were conducted in three nonclonal XDR A. baumannii strains with 5 log10 CFU/ml bacteria against polymyxin B alone and polymyxin B-based two-drug combinations over 24 h. At different time points, samples were obtained and enumerated by viable plating and flow cytometry. Propidium iodide and carboxyfluorescein succinimidyl ester dyes were used to differentiate between live and dead cells and between dividing and nondividing cells, respectively, at the single-cell level, and nondividing live cells were resuscitated and characterized phenotypically. Our results from viable plating showed that polymyxin B plus meropenem and polymyxin B plus rifampin were each bactericidal (>99.9% kill compared to the initial inoculum) against 2/3 XDR A. baumannii strains at 24 h. By flow cytometry, however, none of the combinations were bactericidal against XDR A. baumannii at 24 h. Further analysis using cellular dyes in flow cytometry revealed that upon exposure to polymyxin B-based combinations, XDR A. baumannii entered a viable but nondividing persister state. These bacterial cells reinitiated division upon the removal of antibiotic pressure and did not have a growth deficit compared to the parent strain. We conclude that persister cells develop in XDR A. baumannii upon exposure to polymyxin B-based combinations and that nonplating methods appear to complement viable-plating methods in describing the killing activity of polymyxin B-based combinations against XDR A. baumannii.
Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Polymyxin B/pharmacology , Flow Cytometry , Meropenem/pharmacology , Microbial Sensitivity TestsABSTRACT
BACKGROUND: Antifungal resistance rates are increasing. We investigated the mechanisms of azole resistance of Candida spp. bloodstream isolates obtained from a surveillance study conducted between 2012 and 2015. METHODS: Twenty-six azole non-susceptible Candida spp. clinical isolates were investigated. Antifungal susceptibilities were determined using the Sensititre YeastOne® YO10 panel. The ERG11 gene was amplified and sequenced to identify amino acid polymorphisms, while real-time PCR was utilised to investigate the expression levels of ERG11, CDR1, CDR2 and MDR1. RESULTS: Azole cross-resistance was detected in all except two isolates. Amino acid substitutions (A114S, Y257H, E266D, and V488I) were observed in all four C. albicans tested. Of the 17 C. tropicalis isolates, eight (47%) had ERG11 substitutions, of which concurrent observation of Y132F and S154F was the most common. A novel substitution (I166S) was detected in two of the five C. glabrata isolates. Expression levels of the various genes differed between the species but CDR1 and CDR2 overexpression appeared to be more prominent in C. glabrata. CONCLUSIONS: There was interplay of various different mechanisms, including mechanisms which were not studied here, responsible for azole resistance in Candida spp in our study.
Subject(s)
Antifungal Agents/therapeutic use , Azoles/therapeutic use , Candida/genetics , Candida/isolation & purification , Candidemia/drug therapy , Candidemia/microbiology , Drug Resistance, Fungal/genetics , Amino Acid Substitution , Candida albicans/genetics , Candida albicans/isolation & purification , Fluconazole/therapeutic use , Fungal Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Humans , Microbial Sensitivity TestsABSTRACT
In the last decade, considerable advancements have been made to identify the pharmacokinetic/pharmacodynamic (PK/PD) index that defines the antimicrobial activity of polymyxins. Dose-fractionation studies performed in hollow-fiber models found that altering the dosing schedule had little impact on the killing or suppression of resistance emergence, alluding to AUC/MIC as the pharmacodynamic index that best describes polymyxin's activity. For in vivo efficacy, the PK/PD index that was the most predictive of the antibacterial effect of colistin against P. aeruginosa and A. baumannii was ƒAUC/MIC.
Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Polymyxins/pharmacology , Polymyxins/pharmacokinetics , Acinetobacter baumannii/drug effects , Animals , Colistin/pharmacokinetics , Colistin/pharmacology , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effectsABSTRACT
To guide the timely selection of antibiotic combinations against carbapenem-resistant Gram-negative bacteria (CR-GNB), an in vitro test with a short turnaround time is essential. We developed an in vitro ATP bioluminescence assay to determine effective antibiotic combinations against CR-GNB within 6 h. We tested 42 clinical CR-GNB strains (14 Acinetobacter baumannii, 14 Pseudomonas aeruginosa, and 14 Klebsiella pneumoniae strains) against 74 single antibiotics and two-antibiotic combinations. Bacteria (approximately 5 log10 CFU/ml) were incubated with an antibiotic(s) at 35°C; ATP bioluminescence was measured at 6 h and 24 h; and the measurements were compared to viable counts at 24 h. Receiver operating characteristic (ROC) curves were used to determine the optimal luminescence thresholds (TRLU) for distinguishing between inhibitory and noninhibitory combinations. The areas under the 6-h and 24-h ROC curves were compared using the DeLong method. Prospective validation of the established thresholds was conducted using 18 additional CR-GNB. The predictive accuracy of TRLU for the 6-h ATP bioluminescence assay was 77.5% when all species were analyzed collectively. Predictive accuracies ranged from 73.7% to 82.7% when each species was analyzed individually. Upon comparison of the areas under the 6-h and 24-h ROC curves, the 6-h assay performed significantly better than the 24-h assay (P < 0.01). Predictive accuracy remained high upon prospective validation of the 6-h ATP assay (predictive accuracy, 79.8%; 95% confidence interval [CI], 77.6 to 81.9%), confirming the external validity of the assay. Our findings indicate that our 6-h ATP bioluminescence assay can provide guidance for prospective selection of antibiotic combinations against CR-GNB in a timely manner and may be useful in the management of CR-GNB infections.
Subject(s)
Adenosine Triphosphate/metabolism , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacteria/metabolism , Gram-Negative Bacterial Infections/metabolism , Humans , Luminescent Measurements/methods , Prospective StudiesABSTRACT
BACKGROUND: We conducted a national point prevalence survey (PPS) to determine the prevalence of healthcare-associated infections (HAIs) and antimicrobial use (AMU) in Singapore acute-care hospitals. METHODS: Trained personnel collected HAI, AMU, and baseline hospital- and patient-level data of adult inpatients from 13 private and public acute-care hospitals between July 2015 and February 2016, using the PPS methodology developed by the European Centre for Disease Prevention and Control. Factors independently associated with HAIs were determined using multivariable regression. RESULTS: Of the 5415 patients surveyed, there were 646 patients (11.9%; 95% confidence interval [CI], 11.1%-12.8%) with 727 distinct HAIs, of which 331 (45.5%) were culture positive. The most common HAIs were unspecified clinical sepsis (25.5%) and pneumonia (24.8%). Staphylococcus aureus (12.9%) and Pseudomonas aeruginosa (11.5%) were the most common pathogens implicated in HAIs. Carbapenem nonsusceptibility rates were highest in Acinetobacter species (71.9%) and P. aeruginosa (23.6%). Male sex, increasing age, surgery during current hospitalization, and presence of central venous or urinary catheters were independently associated with HAIs. A total of 2762 (51.0%; 95% CI, 49.7%-52.3%) patients were on 3611 systemic antimicrobial agents; 462 (12.8%) were prescribed for surgical prophylaxis and 2997 (83.0%) were prescribed for treatment. Amoxicillin/clavulanate was the most frequently prescribed (24.6%) antimicrobial agent. CONCLUSIONS: This survey suggested a high prevalence of HAIs and AMU in Singapore's acute-care hospitals. While further research is necessary to understand the causes and costs of HAIs and AMU in Singapore, repeated PPSs over the next decade will be useful to gauge progress at controlling HAIs and AMU.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Cross Infection/epidemiology , Cross Infection/microbiology , Age Factors , Aged , Amoxicillin-Potassium Clavulanate Combination/administration & dosage , Amoxicillin-Potassium Clavulanate Combination/therapeutic use , Carbapenems/pharmacology , Cross Infection/drug therapy , Female , General Surgery , Health Surveys , Hospitals , Humans , Inpatients , Male , Middle Aged , Practice Patterns, Physicians'/statistics & numerical data , Prevalence , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Sex Factors , Singapore/epidemiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purificationABSTRACT
Polymyxin B-based combinations have emerged as a mainstay treatment against carbapenem-resistant Escherichia coli (CREC). We investigated the activity of polymyxin B-based two-antibiotic combinations against CREC using time-kill studies (TKS) and validated the findings in a hollow-fiber infection model (HFIM). TKS were conducted using 5 clinical CREC strains at 5 log10 CFU/ml against 10 polymyxin B-based two-antibiotic combinations at maximum clinically achievable concentrations. HFIMs simulating dosing regimens with polymyxin B (30,000U/kg/day) and tigecycline (100 mg every 12 h) alone and in combination were conducted against two CREC strains at 5 log10 CFU/ml over 120 h. Emergence of resistance was quantified using antibiotic-containing media. Phenotypic characterization (growth rate and stability of resistant phenotypes) of the resistant isolates was performed. All five CREC strains harbored carbapenemases. Polymyxin B and tigecycline MICs ranged from 0.5 mg/liter to 2 mg/liter and from 0.25 mg/liter to 8 mg/liter, respectively. All antibiotics alone did not have bactericidal activity at 24 h in the TKS, except for polymyxin B against two strains. In combination TKS, only polymyxin B plus tigecycline demonstrated both bactericidal activity and synergy in two out of five strains. In the HFIM, polymyxin B alone was bactericidal against both CREC strains before regrowth was observed at 8 h. Phenotypically stable polymyxin B-resistant mutants were observed for both strains, with a reduced growth rate observed in one strain. Tigecycline alone resulted in a slow reduction in bacterial counts. Polymyxin B plus tigecycline resulted in rapid and sustained bactericidal killing up to 120 h. Polymyxin B plus tigecycline is a promising combination against CREC. The clinical relevance of our results warrants further investigations.
Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Escherichia coli/drug effects , Polymyxin B/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli/enzymology , Microbial Sensitivity Tests , Minocycline/analogs & derivatives , Minocycline/pharmacology , TigecyclineABSTRACT
SYNJ1 encodes a polyphosphoinositide phosphatase, synaptojanin 1, which contains two consecutive phosphatase domains and plays a prominent role in synaptic vesicle dynamics. Autosomal recessive inherited variants in SYNJ1 have previously been associated with two different neurological diseases: a recurrent homozygous missense variant (p.Arg258Gln) that abolishes Sac1 phosphatase activity was identified in three independent families with early onset parkinsonism, whereas a homozygous nonsense variant (p.Arg136*) causing a severe decrease of mRNA transcript was found in a single patient with intractable epilepsy and tau pathology. We performed whole exome or genome sequencing in three independent sib pairs with early onset refractory seizures and progressive neurological decline, and identified novel segregating recessive SYNJ1 defects. A homozygous missense variant resulting in an amino acid substitution (p.Tyr888Cys) was found to impair, but not abolish, the dual phosphatase activity of SYNJ1, whereas three premature stop variants (homozygote p.Trp843* and compound heterozygote p.Gln647Argfs*6/p.Ser1122Thrfs*3) almost completely abolished mRNA transcript production. A genetic follow-up screening in a large cohort of 543 patients with a wide phenotypical range of epilepsies and intellectual disability revealed no additional pathogenic variants, showing that SYNJ1 deficiency is rare and probably linked to a specific phenotype. While variants leading to early onset parkinsonism selectively abolish Sac1 function, our results provide evidence that a critical reduction of the dual phosphatase activity of SYNJ1 underlies a severe disorder with neonatal refractory epilepsy and a neurodegenerative disease course. These findings further expand the clinical spectrum of synaptic dysregulation in patients with severe epilepsy, and emphasize the importance of this biological pathway in seizure pathophysiology.
Subject(s)
Drug Resistant Epilepsy/genetics , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/genetics , Phosphoric Monoester Hydrolases/genetics , Age of Onset , Child , Child, Preschool , Cohort Studies , Consanguinity , Exome , Female , Humans , Male , Pedigree , PhenotypeABSTRACT
Polymyxins have emerged as a last-resort treatment of extensively drug-resistant (XDR) Gram-negative Bacillus (GNB) infections, which present a growing threat. Individualized polymyxin-based antibiotic combinations selected on the basis of the results of in vitro combination testing may be required to optimize therapy. A retrospective cohort study of hospitalized patients receiving polymyxins for XDR GNB infections from 2009 to 2014 was conducted to compare the treatment outcomes between patients receiving polymyxin monotherapy (MT), nonvalidated polymyxin combination therapy (NVCT), and in vitro combination testing-validated polymyxin combination therapy (VCT). The primary and secondary outcomes were infection-related mortality and microbiological eradication, respectively. Adverse drug reactions (ADRs) between treatment groups were assessed. A total of 291 patients (patients receiving MT, n = 58; patients receiving NVCT, n = 203; patients receiving VCT, n = 30) were included. The overall infection-related mortality rate was 23.0% (67 patients). In the multivariable analysis, treatment of XDR GNB infections with MT (adjusted odds ratio [aOR], 8.49; 95% confidence interval [CI], 1.56 to 46.05) and NVCT (aOR, 5.75; 95% CI, 1.25 to 25.73) was associated with an increased risk of infection-related mortality compared to that with treatment with VCT. A higher Acute Physiological and Chronic Health Evaluation II (APACHE II) score (aOR, 1.14; 95% CI 1.07 to 1.21) and a higher Charlson comorbidity index (aOR, 1.28; 95% CI, 1.11 to 1.47) were also independently associated with an increased risk of infection-related mortality. No increase in the incidence of ADRs was observed in the VCT group. The use of an individualized antibiotic combination which was selected on the basis of the results of in vitro combination testing was associated with significantly lower rates of infection-related mortality in patients with XDR GNB infections. Future prospective randomized studies will be required to validate these findings.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/pathogenicity , Gram-Negative Bacterial Infections/drug therapy , Polymyxins/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Female , Gram-Negative Bacterial Infections/microbiology , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Retrospective Studies , Young AdultABSTRACT
Against extensively drug-resistant (XDR) Enterobacter cloacae, combination antibiotic therapy may be the only option. We investigated the activity of various antibiotics in combination with polymyxin B using time-kill studies (TKS). TKS were conducted with four nonclonal XDR E. cloacae isolates with 5 log10 CFU/ml bacteria against maximum, clinically achievable concentrations of polymyxin B alone and in two-drug combinations with 10 different antibiotics. A hollow-fiber infection model (HFIM) simulating clinically relevant polymyxin B and tigecycline dosing regimens was conducted for two isolates over 240 h. Emergence of resistance was quantified using antibiotic-containing (3× MIC) media. Biofitness and stability of resistant phenotypes were determined. All XDR E. cloacae isolates were resistant to all antibiotics except for polymyxin B (polymyxin B MIC, 1 to 4 mg/liter). All isolates harbored metallo-ß-lactamases (two with NDM-1, two with IMP-1). In single TKS, all antibiotics alone demonstrated regrowth at 24 h, except amikacin against two strains and polymyxin B and meropenem against one strain each. In combination TKS, only polymyxin B plus tigecycline was bactericidal against all four XDR E. cloacae isolates at 24 h. In HFIM, tigecycline and polymyxin B alone did not exhibit any killing activity. Bactericidal kill was observed at 24 h for both isolates for polymyxin B plus tigecycline; killing was sustained for one isolate but regrowth was observed for the second. Phenotypically stable resistant mutants with reduced in vitro growth rates were observed. Polymyxin B plus tigecycline is a promising combination against XDR E. cloacae However, prolonged and indiscriminate use can result in resistance emergence.
Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterobacter cloacae/drug effects , Minocycline/analogs & derivatives , Models, Statistical , Polymyxin B/pharmacology , beta-Lactamases/genetics , Amikacin/pharmacology , Drug Combinations , Drug Dosage Calculations , Drug Synergism , Enterobacter cloacae/genetics , Enterobacter cloacae/growth & development , Enterobacter cloacae/isolation & purification , Gene Expression , Humans , Meropenem , Microbial Sensitivity Tests , Minocycline/pharmacology , Thienamycins/pharmacology , TigecyclineABSTRACT
The transport protein particle (TRAPP) III complex, comprising the TRAPPI complex and additional subunit Trs85, is an autophagy-specific guanine nucleotide exchange factor for the Rab GTPase Ypt1 that is recruited to the phagophore assembly site when macroautophagy is induced. We present the single-particle electron microscopy structure of TRAPPIII, which reveals that the dome-shaped Trs85 subunit associates primarily with the Trs20 subunit of TRAPPI. We further demonstrate that TRAPPIII binds the coat protein complex (COP) II coat subunit Sec23. The COPII coat facilitates the budding and targeting of ER-derived vesicles with their acceptor compartment. We provide evidence that COPII-coated vesicles and the ER-Golgi fusion machinery are needed for macroautophagy. Our results imply that TRAPPIII binds to COPII vesicles at the phagophore assembly site and that COPII vesicles may provide one of the membrane sources used in autophagosome formation. These events are conserved in yeast to mammals.
Subject(s)
Autophagy/physiology , COP-Coated Vesicles/physiology , Models, Molecular , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Vesicular Transport Proteins/chemistry , Animals , COP-Coated Vesicles/metabolism , COS Cells , Chlorocebus aethiops , Chromatography, Gel , Cloning, Molecular , Electroporation , Escherichia coli , Image Processing, Computer-Assisted , Microscopy, Electron , Microscopy, Fluorescence , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Vesicular Transport Proteins/metabolismABSTRACT
Extensively drug-resistant (XDR) Klebsiella pneumoniae is an emerging pathogen in Singapore. With limited therapeutic options available, combination antibiotics may be the only viable option. In this study, we aimed to elucidate effective antibiotic combinations against XDR K. pneumoniae isolates. Six NDM-1-producing and two OXA-181-producing K. pneumoniae strains were exposed to 12 antibiotics alone and in combination via time-kill studies. A hollow-fiber infection model (HFIM) with pharmacokinetic validation was used to simulate clinically relevant tigecycline-plus-meropenem dosing regimens against 2 XDR K. pneumoniae isolates over 240 h. The emergence of resistance against tigecycline was quantified using drug-free and selective (tigecycline at 3× the MIC) media. The in vitro growth rates were determined and serial passages on drug-free and selective media were carried out on resistant isolates obtained at 240 h. Both the polymyxin B and tigecycline MICs ranged from 1 to 4 mg/liter. In single time-kill studies, all antibiotics alone demonstrated regrowth at 24 h, except for polymyxin B against 2 isolates. Tigecycline plus meropenem was found to be bactericidal in 50% of the isolates. For the isolates that produced OXA-181-like carbapenemases, none of the 55 tested antibiotic combinations was bactericidal. Against 2 isolates in the HFIM, tigecycline plus meropenem achieved a >90% reduction in bacterial burden for 96 h before regrowth was observed until 10(9) CFU/ml at 240 h. Phenotypically stable and resistant isolates, which were recovered from tigecycline-supplemented plates post-HFIM studies, had lower growth rates than those of their respective parent isolates, possibly implying a substantial biofitness deficit in this population. We found that tigecycline plus meropenem may be a potential antibiotic combination for XDR K. pneumoniae infections, but its efficacy was strain specific.