Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Molecules ; 27(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36500427

ABSTRACT

The anomalous interaction between metal ions and the peptide beta-amyloid is one of the hallmarks of Alzheimer's disease. Metal-binding biopolymers, including polysaccharides, can elucidate the fundamental aspects of metal ions' interactions with biological tissue and their interplay in Alzheimer's disease. This work focuses on the role of the alginate composition on Cu(II) adsorption in the presence of histidine or ß-amyloid, the peptide associated with the progression of Alzheimer's disease. Alginate samples with different mannuronic/guluronic (M/G) ratios led to similar Cu(II) adsorption capacities, following the Langmuir isotherm and the pseudo-second-order adsorption kinetic models. Although the presence of histidine produced up to a 20% reduction in the copper adsorption capacity in guluronic-rich alginate samples (M/G~0.61), they presented stable bidentate chelation of the metallic ion. Chemical analyses (FTIR and XPS) demonstrated the role of hydroxyl and carboxyl groups in copper ion chelation, whereas both crystallinity and morphology analyses indicated the prevalence of histidine interaction with guluronic-rich alginate. Similar results were observed for Cu(II) adsorption in alginate beads in the presence of beta-amyloid and histidine, suggesting that the alginate/histidine system is a simple yet representative model to probe the application of biopolymers to metal ion uptake in the presence of biological competitors.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Alginates/chemistry , Histidine , Copper/chemistry , Adsorption , Kinetics , Ions , Biopolymers , Hydrogen-Ion Concentration
2.
Int J Biol Macromol ; 278(Pt 3): 134861, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39163960

ABSTRACT

This work reports the virucidal properties of nonwoven fibers developed via electrospinning with polycaprolactone (PCL) and chitosan quaternized with phosphonium salt (NPCS), emphasizing the influence of NPCS concentration on the structure of fibers and their performance against the MHV-3 coronavirus. The addition of NPCS enhances solutions conductivity and viscosity, leading to fibers containing a finer porous structure with a more hydrophilic and smoother surface, thereby making them a potent barrier against respiratory particles, which is a key factor for protective face masks. In terms of degradation, NPCS paced-up the process, suggesting potential environmental benefits. PCL/NPCS (90/10) fibers exhibit a 99 % coronavirus inhibition within a five-minute exposure without cellular toxicity, while also meeting breathability standards for medical masks. These findings suggest the use of NPCS as a promising strategy to design materials with remarkable virucidal performance and physical characteristics that reinforce their use in the field of biomaterials engineering.


Subject(s)
Antiviral Agents , Chitosan , Polyesters , Chitosan/chemistry , Chitosan/pharmacology , Polyesters/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans
3.
Polymers (Basel) ; 14(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36236105

ABSTRACT

Electrospinning technology was used to produced polyvinylpyrrolidone (PVP)-copper salt composites with structural differences, and their virucidal activity against coronavirus was investigated. The solutions were prepared with 20, 13.3, 10, and 6.6% w/v PVP containing 3, 1.0, 0.6, and 0.2% w/v Cu (II), respectively. The rheological properties and electrical conductivity contributing to the formation of the morphologies of the composite materials were observed by scanning electron microscopy (SEM). SEM images revealed the formation of electrospun PVP-copper salt ultrafine composite fibers (0.80 ± 0.35 µm) and electrosprayed PVP-copper salt composite microparticles (1.50 ± 0.70 µm). Energy-dispersive X-ray spectroscopy (EDS) evidenced the incorporation of copper into the produced composite materials. IR spectra confirmed the chemical composition and showed an interaction of Cu (II) ions with oxygen in the PVP resonant ring. Virucidal composite fibers inactivated 99.999% of coronavirus within 5 min of contact time, with moderate cytotoxicity to L929 cells, whereas the virucidal composite microparticles presented with a virucidal efficiency of 99.999% within 1440 min of exposure, with low cytotoxicity to L929 cells (mouse fibroblast). This produced virucidal composite materials have the potential to be applied in respirators, personal protective equipment, self-cleaning surfaces, and to fabric coat personal protective equipment against SARS-CoV-2, viral outbreaks, or pandemics.

SELECTION OF CITATIONS
SEARCH DETAIL