ABSTRACT
On July 26, 2022, a pediatric nephrologist alerted The Gambia's Ministry of Health (MoH) to a cluster of cases of acute kidney injury (AKI) among young children at the country's sole teaching hospital, and on August 23, 2022, MoH requested assistance from CDC. CDC epidemiologists arrived in The Gambia, a West African country, on September 16 to assist MoH in characterizing the illness, describing the epidemiology, and identifying potential causal factors and their sources. Investigators reviewed medical records and interviewed caregivers to characterize patients' symptoms and identify exposures. The preliminary investigation suggested that various contaminated syrup-based children's medications contributed to the AKI outbreak. During the investigation, MoH recalled implicated medications from a single international manufacturer. Continued efforts to strengthen pharmaceutical quality control and event-based public health surveillance are needed to help prevent future medication-related outbreaks.
Subject(s)
Acute Kidney Injury , Humans , Child , Child, Preschool , Gambia/epidemiology , Africa, Western , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Pharmaceutical PreparationsABSTRACT
Next-generation DNA sequencing is rapidly becoming a powerful tool for food animal management. One valuable use of this technology is to re-examine long-standing observations of performance differences associated with animal husbandry practices to better understand how these differences may be modulated by the gastrointestinal (GI) microbiome. The influences of environmental parameters such as air temperature and relative humidity on broiler chicken performance have commonly been observed, but how the GI microbiome may respond to seasonal environmental changes remains largely unknown. The purposes of this study were therefore to: (1) characterize the cecal microflora of commercial broilers (N = 87) collected at harvest across all 4 seasons, and (2) identify any significant changes of the GI microbiome and specific taxa according to season and Campylobacter status. Finding taxa with significant positive or negative correlations with Campylobacter could be useful by identifying indicator or antagonistic taxa and could also inform inferences regarding the ecological niche of Campylobacter. Whole GI tracts were removed from commercial broilers representing 87 independent flocks between April 2013 and May 2014 in the U.S. state of Georgia. Intact ceca were separated, cultured for Campylobacter and cecal contents were frozen. The cecal microbiome was characterized using barcoded sequencing of 16S rRNA genes on the Illumina MiSeq platform. The composition of the microbiome measured at processing was generally not affected by Campylobacter status but was most significantly affected by season of grow-out. Significantly fewer bacterial genera were found in winter than spring or summer. Bacterial genera with prior evidence for both positive or negative influences on gut health outcomes were significantly less abundant in the fall. Identifying specific members of the GI microbiota that vary according to season may help develop novel interventions to improve husbandry practices and growth performance.