Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Phycol ; 57(6): 1768-1776, 2021 12.
Article in English | MEDLINE | ID: mdl-34490918

ABSTRACT

Cyanotoxins are an emerging threat to freshwater resources worldwide. The most frequently reported cyanotoxins are the microcystins, which threaten the health of humans, wildlife, and ecosystems. Determining the potential for microcystin production is hindered by a lack of morphological features that correlate with microcystin production. However, amplicon-based methods permit the detection of microcystin biosynthesis genes and were employed to assess the toxin potential in Lake Utopia, NB, Canada, an oligotrophic lake that occasionally experiences cyanobacteria blooms. Samples collected at 2 week intervals from June 27th to September 27th, 2016, were screened by polymerase chain reaction (PCR) for the microcystin synthetase E gene (mcyE). The mcyE gene was present in some samples every sampling day, despite microcystin not being detected via ELISA, and was most frequently associated with the larger pore size fractions of the serially filtered samples. Further PCR surveys using primer sets to amplify genus-specific (e.g., Microcystis, Anabaena/Dolichospermum, and Planktothrix) mcyE fragments identified Microcystis as the only taxa in Lake Utopia with toxigenic potential. Sequencing of the 16S rRNA V3-V4 region revealed a community dominated by members of the order Synechococcales (from 38 to 96% relative abundance), but with significant presence of taxa from Cyanobacteriales including Microcystaceae and Nostocaceae. A persistent Microcystis population was detected in samples both testing positive and negative for the mcyE gene, highlighting the importance of identifying cyanotoxin production potential by gene presence and not species identity. To our knowledge, this study represents the first application of amplicon-based approaches to studying toxic cyanobacteria in an understudied region-Atlantic Canada.


Subject(s)
Cyanobacteria , Microcystis , Cyanobacteria/genetics , Cyanobacteria Toxins , Ecosystem , Lakes , Microcystins , RNA, Ribosomal, 16S/genetics
2.
Eur J Protistol ; 80: 125807, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34091379

ABSTRACT

Winogradsky columns have been widely used to study soil microbial communities, but the vast majority of those investigations have focused on the ecology and diversity of bacteria. In contrast, microbial eukaryotes (ME) have been regularly overlooked in studies based on experimental soil columns. Despite the recognized ecological relevance of ME in soil communities, investigations focused on ME diversity and the abundance of certain groups of interest are still scarce. In the present study, we used DNA metabarcoding (high-throughput sequencing of the V4 region of the 18S rRNA locus) to survey the ME diversity and abundance in an experimental Winogradsky soil column. Consistent with previous surveys in natural soils, our survey identified members of Cercozoa (Rhizaria; 31.2%), Apicomplexa and Ciliophora (Alveolata; 12.5%) as the predominant ME groups, but at particular depths we also detected the abundant presence of ME lineages that are typically rare in natural environments, such as members of the Vampyrellida (Rhizaria) and Breviatea (Amorphea). Our survey demonstrates that experimental soil columns are an efficient enrichment-culture approach that can enhance investigations about the diversity and ecology of ME in soils.


Subject(s)
Biodiversity , Ecology/methods , Eukaryota/classification , Soil/parasitology , Eukaryota/genetics , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL