Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Publication year range
1.
Gastroenterology ; 167(1): 34-50, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38286392

ABSTRACT

Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.


Subject(s)
Celiac Disease , Gastrointestinal Microbiome , Severity of Illness Index , Celiac Disease/immunology , Celiac Disease/microbiology , Celiac Disease/genetics , Humans , Animals , Risk Factors , Genetic Predisposition to Disease , Glutens/immunology , Glutens/adverse effects , Diet/adverse effects , Disease Models, Animal
2.
Gastroenterology ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128638

ABSTRACT

BACKGROUND & AIMS: Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T-cell interactions in organoid monolayers expressing human major histocompatibility complex class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4+ T cells in CeD. METHODS: Epithelial major histocompatibility complex class II (MHCII) was determined in active and treated CeD, and in nonimmunized and gluten-immunized DR3-DQ2.5 transgenic mice, lacking mouse MHCII molecules. Organoid monolayers from DR3-DQ2.5 mice were treated with or without interferon (IFN)-γ, and MHCII expression was evaluated by flow cytometry. Organoid monolayers and CD4+ T-cell co-cultures were incubated with gluten, predigested, or not by elastase-producing Pseudomonas aeruginosa or its lasB mutant. T-cell function was assessed based on proliferation, expression of activation markers, and cytokine release in the co-culture supernatants. RESULTS: Patients with active CeD and gluten-immunized DR3-DQ2.5 mice demonstrated epithelial MHCII expression. Organoid monolayers derived from gluten-immunized DR3-DQ2.5 mice expressed MHCII, which was upregulated by IFN-γ. In organoid monolayer T-cell co-cultures, gluten increased the proliferation of CD4+ T cells, expression of T-cell activation markers, and the release of interleukin-2, IFN-γ, and interleukin-15 in co-culture supernatants. Gluten metabolized by P aeruginosa, but not the lasB mutant, enhanced CD4+ T-cell proliferation and activation. CONCLUSIONS: Gluten antigens are efficiently presented by MHCII-expressing IECs, resulting in the activation of gluten-specific CD4+ T cells, which is enhanced by gluten predigestion with microbial elastase. Therapeutics directed at IECs may offer a novel approach for modulating both adaptive and innate immunity in patients with CeD.

3.
Gastroenterology ; 163(5): 1351-1363.e15, 2022 11.
Article in English | MEDLINE | ID: mdl-35810781

ABSTRACT

BACKGROUND & AIMS: Genes and gluten are necessary but insufficient to cause celiac disease (CeD). Altered gut microbiota has been implicated as an additional risk factor. Variability in sampling site may confound interpretation and mechanistic insight, as CeD primarily affects the small intestine. Thus, we characterized CeD microbiota along the duodenum and in feces and verified functional impact in gnotobiotic mice. METHODS: We used 16S rRNA gene sequencing (Illumina) and predicted gene function (PICRUSt2) in duodenal biopsies (D1, D2 and D3), aspirates, and stool from patients with active CeD and controls. CeD alleles were determined in consented participants. A subset of duodenal samples stratified according to similar CeD risk genotypes (controls DQ2-/- or DQ2+/- and CeD DQ2+/-) were used for further analysis and to colonize germ-free mice for gluten metabolism studies. RESULTS: Microbiota composition and predicted function in CeD was largely determined by intestinal location. In the duodenum, but not stool, there was higher abundance of Escherichia coli (D1), Prevotella salivae (D2), and Neisseria (D3) in CeD vs controls. Predicted bacterial protease and peptidase genes were altered in CeD and impaired gluten degradation was detected only in mice colonized with CeD microbiota. CONCLUSIONS: Our results showed luminal and mucosal microbial niches along the gut in CeD. We identified novel microbial proteolytic pathways involved in gluten detoxification that are impaired in CeD but not in controls carrying DQ2, suggesting an association with active duodenal inflammation. Sampling site should be considered a confounding factor in microbiome studies in CeD.


Subject(s)
Celiac Disease , Gastrointestinal Microbiome , Mice , Animals , Celiac Disease/complications , RNA, Ribosomal, 16S/genetics , Glutens/metabolism , Peptide Hydrolases
4.
Gastroenterology ; 160(5): 1532-1545, 2021 04.
Article in English | MEDLINE | ID: mdl-33310084

ABSTRACT

BACKGROUND & AIMS: Altered gut microbiota composition and function have been associated with inflammatory bowel diseases, including ulcerative colitis (UC), but the causality and mechanisms remain unknown. METHODS: We applied 16S ribosomal RNA gene sequencing, shotgun metagenomic sequencing, in vitro functional assays, and gnotobiotic colonizations to define the microbial composition and function in fecal samples obtained from a cohort of healthy individuals at risk for inflammatory bowel diseases (pre-UC) who later developed UC (post-UC) and matched healthy control individuals (HCs). RESULTS: Microbiota composition of post-UC samples was different from HC and pre-UC samples; however, functional analysis showed increased fecal proteolytic and elastase activity before UC onset. Metagenomics identified more than 22,000 gene families that were significantly different between HC, pre-UC, and post-UC samples. Of these, 237 related to proteases and peptidases, suggesting a bacterial component to the pre-UC proteolytic signature. Elastase activity inversely correlated with the relative abundance of Adlercreutzia and other potentially beneficial taxa and directly correlated with known proteolytic taxa, such as Bacteroides vulgatus. High elastase activity was confirmed in Bacteroides isolates from fecal samples. The bacterial contribution and functional significance of the proteolytic signature were investigated in germ-free adult mice and in dams colonized with HC, pre-UC, or post-UC microbiota. Mice colonized with or born from pre-UC-colonized dams developed higher fecal proteolytic activity and an inflammatory immune tone compared with HC-colonized mice. CONCLUSIONS: We have identified increased fecal proteolytic activity that precedes the clinical diagnosis of UC and associates with gut microbiota changes. This proteolytic signature may constitute a noninvasive biomarker of inflammation to monitor at-risk populations that can be targeted therapeutically with antiproteases.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/metabolism , Colitis, Ulcerative/microbiology , Feces/microbiology , Gastrointestinal Microbiome , Peptide Hydrolases/metabolism , Adolescent , Adult , Animals , Bacteria/drug effects , Bacteria/genetics , Bacterial Proteins/genetics , Biomarkers/metabolism , Case-Control Studies , Child , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/drug therapy , Disease Models, Animal , Fecal Microbiota Transplantation , Female , Gastrointestinal Microbiome/drug effects , Germ-Free Life , Humans , Male , Metagenome , Metagenomics , Mice, Inbred C57BL , Peptide Hydrolases/genetics , Predictive Value of Tests , Prospective Studies , Protease Inhibitors/therapeutic use , Proteolysis , Reproducibility of Results , Ribotyping , Young Adult
5.
Clin Gastroenterol Hepatol ; 19(11): 2343-2352.e8, 2021 11.
Article in English | MEDLINE | ID: mdl-32827724

ABSTRACT

BACKGROUND & AIMS: Many patients with irritable bowel syndrome (IBS) perceive that their symptoms are triggered by wheat-containing foods. We assessed symptoms and gastrointestinal transit before and after a gluten-free diet (GFD) in unselected patients with IBS and investigated biomarkers associated with symptoms. METHODS: We performed a prospective study of 50 patients with IBS (ROME III, all subtypes), with and without serologic reactivity to gluten (antigliadin IgG and IgA), and 25 healthy subjects (controls) at a university hospital in Hamilton, Ontario, Canada, between 2012 and 2016. Gastrointestinal transit, gut symptoms, anxiety, depression, somatization, dietary habits, and microbiota composition were studied before and after 4 weeks of a GFD. HLA-DQ2/DQ8 status was determined. GFD compliance was assessed by a dietitian and by measuring gluten peptides in stool. RESULTS: There was no difference in symptoms among patients at baseline, but after the GFD, patients with antigliadin IgG and IgA reported less diarrhea than patients without these antibodies (P = .03). Compared with baseline, IBS symptoms improved in 18 of 24 patients (75%) with antigliadin IgG and IgA and in 8 of 21 patients (38%) without the antibodies. Although constipation, diarrhea, and abdominal pain were reduced in patients with antigliadin IgG and IgA, only pain decreased in patients without these antibodies. Gastrointestinal transit normalized in a higher proportion of patients with antigliadin IgG and IgA. Anxiety, depression, somatization, and well-being increased in both groups. The presence of antigliadin IgG was associated with overall reductions in symptoms (adjusted odds ratio compared with patients without this antibody, 128.9; 95% CI, 1.16-1427.8; P = .04). Symptoms were reduced even in patients with antigliadin IgG and IgA who reduced gluten intake but were not strictly compliant with the GFD. In controls, a GFD had no effect on gastrointestinal symptoms or gut function. CONCLUSIONS: Antigliadin IgG can be used as a biomarker to identify patients with IBS who might have reductions in symptoms, particularly diarrhea, on a GFD. Larger studies are needed to validate these findings. ClinicalTrials.gov: NCT03492333.


Subject(s)
Celiac Disease , Irritable Bowel Syndrome , Diarrhea , Diet, Gluten-Free , Humans , Immunoglobulin G , Prospective Studies
6.
Clin Gastroenterol Hepatol ; 19(2): 391-393, 2021 02.
Article in English | MEDLINE | ID: mdl-33059041

ABSTRACT

The World Health Organization declared coronavirus disease-2019 (COVID-19) a global pandemic in March 2020. Since then, there are more than 34 million cases of COVID-19 leading to more than 1 million deaths worldwide. Numerous studies suggest that celiac disease (CeD), a chronic immune-mediated gastrointestinal condition triggered by gluten, is associated with an increased risk of respiratory infections.1-3 However, how it relates to the risk of COVID-19 is unknown. To address this gap, we conducted a cross-sectional study to evaluate whether patients with self-reported CeD are at an increased risk of contracting COVID-19.


Subject(s)
COVID-19/epidemiology , Celiac Disease/epidemiology , Adult , Case-Control Studies , Celiac Disease/diet therapy , Celiac Disease/physiopathology , Diet, Gluten-Free , Female , Humans , Male , Odds Ratio , Risk Factors , SARS-CoV-2 , Surveys and Questionnaires
7.
Gastroenterology ; 156(8): 2266-2280, 2019 06.
Article in English | MEDLINE | ID: mdl-30802444

ABSTRACT

BACKGROUND & AIMS: Wheat-related disorders, a spectrum of conditions induced by the ingestion of gluten-containing cereals, have been increasing in prevalence. Patients with celiac disease have gluten-specific immune responses, but the contribution of non-gluten proteins to symptoms in patients with celiac disease or other wheat-related disorders is controversial. METHODS: C57BL/6 (control), Myd88-/-, Ticam1-/-, and Il15-/- mice were placed on diets that lacked wheat or gluten, with or without wheat amylase trypsin inhibitors (ATIs), for 1 week. Small intestine tissues were collected and intestinal intraepithelial lymphocytes (IELs) were measured; we also investigated gut permeability and intestinal transit. Control mice fed ATIs for 1 week were gavaged daily with Lactobacillus strains that had high or low ATI-degrading capacity. Nonobese diabetic/DQ8 mice were sensitized to gluten and fed an ATI diet, a gluten-containing diet or a diet with ATIs and gluten for 2 weeks. Mice were also treated with Lactobacillus strains that had high or low ATI-degrading capacity. Intestinal tissues were collected and IELs, gene expression, gut permeability and intestinal microbiota profiles were measured. RESULTS: In intestinal tissues from control mice, ATIs induced an innate immune response by activation of Toll-like receptor 4 signaling to MD2 and CD14, and caused barrier dysfunction in the absence of mucosal damage. Administration of ATIs to gluten-sensitized mice expressing HLA-DQ8 increased intestinal inflammation in response to gluten in the diet. We found ATIs to be degraded by Lactobacillus, which reduced the inflammatory effects of ATIs. CONCLUSIONS: ATIs mediate wheat-induced intestinal dysfunction in wild-type mice and exacerbate inflammation to gluten in susceptible mice. Microbiome-modulating strategies, such as administration of bacteria with ATI-degrading capacity, may be effective in patients with wheat-sensitive disorders.


Subject(s)
Celiac Disease/immunology , Diet, Gluten-Free/methods , Gliadin/adverse effects , Lactobacillus/immunology , Triticum/adverse effects , Amylases/antagonists & inhibitors , Animals , Celiac Disease/diet therapy , Celiac Disease/physiopathology , Disease Models, Animal , Gastrointestinal Microbiome/immunology , Gliadin/immunology , Humans , Immunity, Innate/drug effects , Lactobacillus/metabolism , Mice , Mice, Inbred C57BL , Random Allocation , Reference Values , Sensitivity and Specificity , Triticum/immunology , Trypsin Inhibitors/immunology , Trypsin Inhibitors/pharmacology
8.
Curr Opin Gastroenterol ; 36(6): 479-484, 2020 11.
Article in English | MEDLINE | ID: mdl-32868507

ABSTRACT

PURPOSE OF REVIEW: We performed a literature review of the latest studies on the interactions between the host immune system and microbes in chronic intestinal inflammatory conditions. RECENT FINDINGS: The mechanisms leading to celiac disease (CeD) and inflammatory bowel disease (IBD), the most common chronic inflammatory gastrointestinal conditions, are complex. The intestinal homeostasis depends on the interactions between the microbiota, the intestinal mucosa and the host immune system. Failure to achieve or maintain equilibrium between a host and its microbiota has the potential to induce chronic conditions with an underlying inflammatory component. Mechanisms by which intestinal microbes trigger inflammation include the alteration of intestinal permeability, activation of the host immune system and digestion of dietary antigens with a consequent repercussion on tolerance to food. Therefore, therapies modulating gut microbiota, including diet, antibiotics, probiotics and faecal transplantation have a potential in CeD and IBD. Probiotics are effective to treat pouchitis and faecal transplant for ulcerative colitis, but the evidence is less clear in Crohn's disease or CeD. SUMMARY: Diverse regulatory mechanisms cooperate to maintain intestinal homeostasis, and a breakdown in these pathways may precipitate inflammation. The role of microbiota inducing immune dysfunction and inflammation supports the therapeutic rationale of manipulating microbiota to treat chronic inflammatory conditions.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Probiotics , Humans , Inflammatory Bowel Diseases/therapy , Probiotics/therapeutic use
9.
Am J Physiol Gastrointest Liver Physiol ; 317(2): G161-G170, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31188640

ABSTRACT

The prevalence of celiac disease (CeD) has increased in the last decades, suggesting a role for environmental factors in addition to gluten. Several cohort studies have shown that different gastrointestinal infections increase CeD risk. However, the mechanisms by which microbes participate in CeD have remained elusive. Recently, with the use of animal models, both viral and bacterial opportunistic pathogens were shown to induce immune activation relevant for CeD. The hypothesis that viral and/or bacterial infections can contribute to immune activation and breakdown of tolerance toward gluten in genetically susceptible individuals is therefore reinforced. Here, we discuss the evidence regarding the role of microbes in promoting CeD and the specific pathways triggered by microbes that could participate in CeD pathogenesis. Understanding these pathways will allow us to develop optimal microbiota-modulating strategies to help prevent CeD.


Subject(s)
Bacterial Infections/immunology , Celiac Disease , Gastrointestinal Microbiome/immunology , Glutens/metabolism , Celiac Disease/metabolism , Celiac Disease/microbiology , Celiac Disease/prevention & control , Humans , Immune Tolerance
10.
Gastroenterol Hepatol ; 42(7): 449-457, 2019.
Article in English, Spanish | MEDLINE | ID: mdl-31262542

ABSTRACT

Wheat is a common cereal in the Western diet and an important source of protein as well as fiber. However, some individuals develop adverse reactions to a wheat-containing diet. The best characterized is celiac disease which develops after intake of gluten in individuals with genetic predisposition. Other wheat-related conditions are less well defined in terms of diagnosis, specific trigger and underlying pathways. Despite this, the overall prevalence of wheat-related disorders has increased in the last decades and the role of microbial factors has been suggested. Several studies have described an altered intestinal microbiota in celiac patients compared to healthy subjects, but less information is available regarding other wheat-related disorders. Here, we discuss the importance of the intestinal microbiota in the metabolism of wheat proteins and the development of inflammatory or functional conditions. Understanding these interactions will open new directions for therapeutic development using bacteria with optimal wheat protein degrading capacity.


Subject(s)
Gastrointestinal Microbiome , Plant Proteins/metabolism , Triticum , Adaptive Immunity , Bacteria/metabolism , Celiac Disease/diet therapy , Celiac Disease/metabolism , Celiac Disease/microbiology , Diet, Gluten-Free , Food Hypersensitivity/diet therapy , Food Hypersensitivity/microbiology , Food Hypersensitivity/prevention & control , Glutens/adverse effects , Humans , Immunity, Innate , Plant Proteins/immunology , T-Lymphocytes/immunology , Triticum/adverse effects , Triticum/immunology , Trypsin Inhibitors/adverse effects , Trypsin Inhibitors/metabolism , Wheat Germ Agglutinins/adverse effects , Wheat Germ Agglutinins/metabolism
12.
Gastroenterology ; 151(4): 670-83, 2016 10.
Article in English | MEDLINE | ID: mdl-27373514

ABSTRACT

BACKGROUND & AIMS: Partially degraded gluten peptides from cereals trigger celiac disease (CD), an autoimmune enteropathy occurring in genetically susceptible persons. Susceptibility genes are necessary but not sufficient to induce CD, and additional environmental factors related to unfavorable alterations in the microbiota have been proposed. We investigated gluten metabolism by opportunistic pathogens and commensal duodenal bacteria and characterized the capacity of the produced peptides to activate gluten-specific T-cells from CD patients. METHODS: We colonized germ-free C57BL/6 mice with bacteria isolated from the small intestine of CD patients or healthy controls, selected for their in vitro gluten-degrading capacity. After gluten gavage, gliadin amount and proteolytic activities were measured in intestinal contents. Peptides produced by bacteria used in mouse colonizations from the immunogenic 33-mer gluten peptide were characterized by liquid chromatography tandem mass spectrometry and their immunogenic potential was evaluated using peripheral blood mononuclear cells from celiac patients after receiving a 3-day gluten challenge. RESULTS: Bacterial colonizations produced distinct gluten-degradation patterns in the mouse small intestine. Pseudomonas aeruginosa, an opportunistic pathogen from CD patients, exhibited elastase activity and produced peptides that better translocated the mouse intestinal barrier. P aeruginosa-modified gluten peptides activated gluten-specific T-cells from CD patients. In contrast, Lactobacillus spp. from the duodenum of non-CD controls degraded gluten peptides produced by human and P aeruginosa proteases, reducing their immunogenicity. CONCLUSIONS: Small intestinal bacteria exhibit distinct gluten metabolic patterns in vivo, increasing or reducing gluten peptide immunogenicity. This microbe-gluten-host interaction may modulate autoimmune risk in genetically susceptible persons and may underlie the reported association of dysbiosis and CD.


Subject(s)
Celiac Disease/immunology , Celiac Disease/microbiology , Duodenum/microbiology , Glutens/immunology , Glutens/metabolism , Immunogenetic Phenomena , Animals , Bacterial Translocation , Case-Control Studies , Celiac Disease/genetics , Humans , Lactobacillus/physiology , Mice , Mice, Inbred C57BL , Pseudomonas aeruginosa/physiology , T-Lymphocytes/immunology
15.
Br J Nutr ; 114(8): 1157-67, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26428276

ABSTRACT

Coeliac disease (CD) is an immune-mediated enteropathy resulting from exposure to gluten in genetically predisposed individuals. Gluten proteins are partially digested by human proteases generating immunogenic peptides that cause inflammation in patients carrying HLA-DQ2 and DQ8 genes. Although intestinal dysbiosis has been associated with patients with CD, bacterial metabolism of gluten has not been studied in depth thus far. The aim of this study was to analyse the metabolic activity of intestinal bacteria associated with gluten intake in healthy individuals, CD patients and first-degree relatives of CD patients. Faecal samples belonging to twenty-two untreated CD patients, twenty treated CD patients, sixteen healthy volunteers on normal diet, eleven healthy volunteers on gluten-free diet (GFD), seventy-one relatives of CD patients on normal diet and sixty-nine relatives on GFD were tested for several proteolytic activities, cultivable bacteria involved in gluten metabolism, SCFA and the amount of gluten in faeces. We detected faecal peptidasic activity against the gluten-derived peptide 33-mer. CD patients showed differences in faecal glutenasic activity (FGA), faecal tryptic activity (FTA), SCFA and faecal gluten content with respect to healthy volunteers. Alterations in specific bacterial groups metabolising gluten such as Clostridium or Lactobacillus were reported in CD patients. Relatives showed similar parameters to CD patients (SCFA) and healthy volunteers (FTA and FGA). Our data support the fact that commensal microbial activity is an important factor in the metabolism of gluten proteins and that this activity is altered in CD patients.


Subject(s)
Celiac Disease/diet therapy , Glutens/administration & dosage , Glutens/metabolism , Acetic Acid/metabolism , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Adolescent , Adult , Alleles , Butyric Acid/metabolism , Caproates/metabolism , Diet, Gluten-Free , Feces/chemistry , Firmicutes/isolation & purification , Firmicutes/metabolism , HLA-DQ Antigens/metabolism , Healthy Volunteers , Humans , Intestinal Mucosa/metabolism , Intestines/microbiology , Middle Aged , Pentanoic Acids/metabolism , Propionates/metabolism , Proteobacteria/isolation & purification , Proteobacteria/metabolism , Young Adult
16.
Gut Microbes ; 16(1): 2387857, 2024.
Article in English | MEDLINE | ID: mdl-39171684

ABSTRACT

Imbalances in proteolytic activity have been linked to the development of inflammatory bowel diseases (IBD) and experimental colitis. Proteases in the intestine play important roles in maintaining homeostasis, but exposure of mucosal tissues to excess proteolytic activity can promote pathology through protease-activated receptors (PARs). Previous research implicates microbial proteases in IBD, but the underlying pathways and specific interactions between microbes and PARs remain unclear. In this study, we investigated the role of microbial proteolytic activation of the external domain of PAR2 in intestinal injury using mice expressing PAR2 with a mutated N-terminal external domain that is resistant to canonical activation by proteolytic cleavage. Our findings demonstrate the key role of proteolytic cleavage of the PAR2 external domain in promoting intestinal permeability and inflammation during colitis. In wild-type mice expressing protease-sensitive PAR2, excessive inflammation leads to the expansion of bacterial taxa that cleave the external domain of PAR2, exacerbating colitis severity. In contrast, mice expressing mutated protease-resistant PAR2 exhibit attenuated colitis severity and do not experience the same proteolytic bacterial expansion. Colonization of wild-type mice with proteolytic PAR2-activating Enterococcus and Staphylococcus worsens colitis severity. Our study identifies a previously unknown interaction between proteolytic bacterial communities, which are shaped by inflammation, and the external domain of PAR2 in colitis. The findings should encourage new therapeutic developments for IBD by targeting excessive PAR2 cleavage by bacterial proteases.


Subject(s)
Colitis , Proteolysis , Receptor, PAR-2 , Animals , Receptor, PAR-2/metabolism , Receptor, PAR-2/genetics , Colitis/microbiology , Colitis/pathology , Colitis/metabolism , Mice , Gastrointestinal Microbiome , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/microbiology , Enterococcus/genetics , Enterococcus/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/enzymology , Disease Models, Animal , Humans , Protein Domains , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology
17.
Cell Mol Gastroenterol Hepatol ; 18(4): 101334, 2024.
Article in English | MEDLINE | ID: mdl-38494056

ABSTRACT

BACKGROUND & AIMS: Abdominal pain is a major symptom of diseases that are associated with microbial dysbiosis, including irritable bowel syndrome and inflammatory bowel disease. Germ-free mice are more prone to abdominal pain than conventionally housed mice, and reconstitution of the microbiota in germ-free mice reduces abdominal pain sensitivity. However, the mechanisms underlying microbial modulation of pain remain elusive. We hypothesized that disruption of the intestinal microbiota modulates the excitability of peripheral nociceptive neurons. METHODS: In vivo and in vitro assays of visceral sensation were performed on mice treated with the nonabsorbable antibiotic vancomycin (50 µg/mL in drinking water) for 7 days and water-treated control mice. Bacterial dysbiosis was verified by 16s rRNA analysis of stool microbial composition. RESULTS: Treatment of mice with vancomycin led to an increased sensitivity to colonic distension in vivo and in vitro and hyperexcitability of dorsal root ganglion (DRG) neurons in vitro, compared with controls. Interestingly, hyperexcitability of DRG neurons was not restricted to those that innervated the gut, suggesting a widespread effect of gut dysbiosis on peripheral pain circuits. Consistent with this, mice treated with vancomycin were more sensitive than control mice to thermal stimuli applied to hind paws. Incubation of DRG neurons from naive mice in serum from vancomycin-treated mice increased DRG neuron excitability, suggesting that microbial dysbiosis alters circulating mediators that influence nociception. The cysteine protease inhibitor E64 (30 nmol/L) and the protease-activated receptor 2 (PAR-2) antagonist GB-83 (10 µmol/L) each blocked the increase in DRG neuron excitability in response to serum from vancomycin-treated mice, as did the knockout of PAR-2 in NaV1.8-expressing neurons. Stool supernatant, but not colonic supernatant, from mice treated with vancomycin increased DRG neuron excitability via cysteine protease activation of PAR-2. CONCLUSIONS: Together, these data suggest that gut microbial dysbiosis alters pain sensitivity and identify cysteine proteases as a potential mediator of this effect.


Subject(s)
Dysbiosis , Ganglia, Spinal , Gastrointestinal Microbiome , Vancomycin , Animals , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Gastrointestinal Microbiome/drug effects , Mice , Vancomycin/pharmacology , Dysbiosis/microbiology , Male , Receptor, PAR-2/metabolism , Peptide Hydrolases/metabolism , Abdominal Pain/microbiology , Nociceptors/drug effects , Nociceptors/metabolism , Hyperalgesia/microbiology , Mice, Inbred C57BL , Disease Models, Animal , Visceral Pain/microbiology , Anti-Bacterial Agents/pharmacology
18.
Methods Cell Biol ; 179: 77-101, 2023.
Article in English | MEDLINE | ID: mdl-37625882

ABSTRACT

Celiac disease (CeD) is a common immune-mediated disease triggered by the ingestion of gluten in genetically predisposed individuals. CeD is unique in that the trigger (gluten), necessary genes (HLA-DQ2 and DQ8), and the autoantigen (tissue transglutaminase) have been identified, allowing additional environmental co-factors, like the intestinal microbiota, to be studied through relevant in vivo models. Murine models for CeD have come a long way in the past decade and there are now in vitro and in vivo tools available that mimic certain aspects of clinical disease. These models, many of which express the CeD risk genes, have recently been used to study the mechanisms through which the microbiota play a role in CeD pathogenesis through a gnotobiotic approach. Historically, the generation of gnotobiology technology in mid-20th century allowed for the study of immunity and physiology under a complete absence of microbes (axenic) or known colonized status (gnotobiotic). This enabled understanding of mechanisms by which certain bacteria contribute to health and disease. With this perspective, here, we will discuss the various murine models currently being used to study CeD. We will then describe how utilizing axenic and gnotobiotic CeD models has increased our understanding of how microbes influence relevant steps of CeD pathogenesis, and explain key methodology involved in axenic and gnotobiotic modeling.


Subject(s)
Celiac Disease , Gastrointestinal Microbiome , Humans , Animals , Mice , Celiac Disease/genetics , Glutens
19.
Gut Microbes ; 15(1): 2181922, 2023.
Article in English | MEDLINE | ID: mdl-36843008

ABSTRACT

Proteases are an evolutionarily conserved family of enzymes that degrade peptide bonds and have been implicated in several common gastrointestinal (GI) diseases. Although luminal proteolytic activity is important for maintenance of homeostasis and health, the current review describes recent advances in our understanding of how overactivity of luminal proteases contributes to the pathophysiology of celiac disease, irritable bowel syndrome, inflammatory bowel disease and GI infections. Luminal proteases, many of which are produced by the microbiota, can modulate the immunogenicity of dietary antigens, reduce mucosal barrier function and activate pro-inflammatory and pro-nociceptive host signaling. Increased proteolytic activity has been ascribed to both increases in protease production and decreases in inhibitors of luminal proteases. With the identification of strains of bacteria that are important sources of proteases and their inhibitors, the stage is set to develop drug or microbial therapies to restore protease balance and alleviate disease.


Subject(s)
Bacterial Proteins , Celiac Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Peptide Hydrolases , Humans , Bacteria/genetics , Bacteria/metabolism , Endopeptidases , Gastrointestinal Microbiome/physiology , Inflammatory Bowel Diseases/microbiology , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
20.
Gut Microbes ; 15(1): 2205425, 2023.
Article in English | MEDLINE | ID: mdl-37131291

ABSTRACT

Emerging evidence implicates microbial proteolytic activity in ulcerative colitis (UC), but whether it also plays a role in Crohn's disease (CD) remains unclear. We investigated the effects of colonizing adult and neonatal germ-free C57BL/6 mice with CD microbiota, selected based on high (CD-HPA) or low fecal proteolytic activity (CD-LPA), or microbiota from healthy controls with LPA (HC-LPA) or HPA (HC-HPA). We then investigated colitogenic mechanisms in gnotobiotic C57BL/6, and in mice with impaired Nucleotide-binding Oligomerization Domain-2 (NOD2) and Protease-Activated Receptor 2 (PAR2) cleavage resistant mice (Nod2-/-; R38E-PAR2 respectively). At sacrifice, total fecal proteolytic, elastolytic, and mucolytic activity were analyzed. Microbial community and predicted function were assessed by 16S rRNA gene sequencing and PICRUSt2. Immune function and colonic injury were investigated by inflammatory gene expression (NanoString) and histology. Colonization with HC-LPA or CD-LPA lowered baseline fecal proteolytic activity in germ-free mice, which was paralleled by lower acute inflammatory cell infiltrate. CD-HPA further increased proteolytic activity compared with germ-free mice. CD-HPA mice had lower alpha diversity, distinct microbial profiles and higher fecal proteolytic activity compared with CD-LPA. C57BL/6 and Nod2-/- mice, but not R38E-PAR2, colonized with CD-HPA had higher colitis severity than those colonized with CD-LPA. Our results indicate that CD proteolytic microbiota is proinflammatory, increasing colitis severity through a PAR2 pathway.


Subject(s)
Colitis, Ulcerative , Colitis , Crohn Disease , Gastrointestinal Microbiome , Microbiota , Animals , Mice , Mice, Inbred C57BL , Receptor, PAR-2/genetics , RNA, Ribosomal, 16S/genetics , Inflammation , Serine Proteases
SELECTION OF CITATIONS
SEARCH DETAIL