Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Circ Res ; 134(12): 1808-1823, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843289

ABSTRACT

Mounting experimental and clinical evidence has revealed that adaptive immune mechanisms targeting myocardial antigens are triggered by different forms of cardiac injury and impact disease progression. B and T lymphocytes recognize specific antigens via unique adaptive immune receptors generated through a somatic rearrangement process that generates a potential repertoire of 1019 unique receptors. While the adaptive immune receptor repertoire diversity provides the basis for immunologic specificity, making sense of it can be a challenging task. In the present review, we discuss key aspects underlying the generation of TCRs (T cell receptors) and emerging tools for their study in the context of myocardial diseases. Moreover, we outline how exploring TCR repertoires could lead to a deeper understanding of myocardial pathophysiological principles and potentially serve as diagnostic tools.


Subject(s)
Cardiomyopathies , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Animals , Cardiomyopathies/immunology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Adaptive Immunity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Myocardium/metabolism , Myocardium/immunology , Myocardium/pathology
2.
Circ Res ; 132(5): 565-582, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36744467

ABSTRACT

BACKGROUND: In the past years, several studies investigated how distinct immune cell subsets affects post-myocardial infarction repair. However, whether and how the tissue environment controls these local immune responses has remained poorly understood. We sought to investigate how antigen-specific T-helper cells differentiate under myocardial milieu's influence. METHODS: We used a transgenic T cell receptor (TCR-M) model and major histocompatibility complex-II tetramers, both myosin-specific, combined with single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq]) and functional phenotyping to elucidate how the antigen-specific CD4+ T cells differentiate in the murine infarcted myocardium and influence tissue repair. Additionally, we transferred proinflammatory versus regulatory predifferentiated TCR-M-cells to dissect how they specially contribute to post-myocardial infarction inflammation. RESULTS: Flow cytometry and scRNA-/TCR-seq analyses revealed that transferred TCR-M cells acquired an induced regulatory phenotype (induced regulatory T cell) in the infarcted myocardium and blunted local inflammation. Myocardial TCR-M cells differentiated into 2 main lineages enriched with either cell activation and profibrotic transcripts (eg, Tgfb1) or suppressor immune checkpoints (eg, Pdcd1), which we also found in human myocardial tissue. These cells produced high levels of LAP (latency-associated peptide) and inhibited IL-17 (interleukin-17) responses. Endogenous myosin-specific T-helper cells, identified using genetically barcoded tetramers, also accumulated in infarcted hearts and exhibited a regulatory phenotype. Notably, TCR-M cells that were predifferentiated toward a regulatory phenotype in vitro maintained stable in vivo FOXP3 (Forkhead box P3) expression and anti-inflammatory activity whereas TH17 partially converted toward a regulatory phenotype in the injured myocardium. Overall, the myosin-specific Tregs dampened post-myocardial infarction inflammation, suppressed neighboring T cells, and were associated with improved cardiac function. CONCLUSIONS: These findings provide novel evidence that the heart and its draining lymph nodes actively shape local immune responses by promoting the differentiation of antigen-specific Tregs poised with suppressive function.


Subject(s)
Myocardial Infarction , T-Lymphocytes, Regulatory , Mice , Animals , Humans , Myocardium/metabolism , Myocardial Infarction/metabolism , Antigens/metabolism , Cell Differentiation , Myosins/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Inflammation/metabolism , Forkhead Transcription Factors/genetics
3.
Eur Heart J ; 43(28): 2698-2709, 2022 07 21.
Article in English | MEDLINE | ID: mdl-35417553

ABSTRACT

AIMS: Newborn mice and humans display transient cardiac regenerative potential that rapidly declines postnatally. Patients who survive a myocardial infarction (MI) often develop chronic heart failure due to the heart's poor regeneration capacity. We hypothesized that the cardiac 'regenerative-to-scarring' transition might be driven by the perinatal shifts observed in the circulating T-cell compartment. METHODS AND RESULTS: Post-MI immune responses were characterized in 1- (P1) vs. 7-day-old (P7) mice subjected to left anterior descending artery ligation. Myocardial infarction induced robust early inflammatory responses (36 h post-MI) in both age groups, but neonatal hearts exhibited rapid resolution of inflammation and full functional recovery. The perinatal loss of myocardial regenerative capacity was paralleled by a baseline increase in αß-T cell (CD4+ and CD8+) numbers. Strikingly, P1-infarcted mice reconstituted with adult T-cells shifted to an adult-like healing phenotype, marked by irreversible cardiac functional impairment and increased fibrosis. Infarcted neonatal mice harbouring adult T-cells also had more monocyte-derived macrophage recruitment, as typically seen in adults. At the transcriptome level, infarcted P1 hearts that received isolated adult T-cells showed enriched gene sets linked to fibrosis, inflammation, and interferon-gamma (IFN-γ) signalling. In contrast, newborn mice that received isolated Ifng-/- adult T-cells prior to MI displayed a regenerative phenotype that resembled that of its age-matched untreated controls. CONCLUSION: Physiological T-cell development or adoptive transfer of adult IFN-γ-producing T-cells into neonates contributed to impaired cardiac regeneration and promoted irreversible structural and functional cardiac damage. These findings reveal a trade-off between myocardial regenerative potential and the development of T-cell competence.


Subject(s)
Myocardial Infarction , Myocytes, Cardiac , Adult , Animals , Disease Models, Animal , Female , Fibrosis , Humans , Inflammation/pathology , Interferon-gamma , Mice , Myocardium/pathology , Myocytes, Cardiac/physiology , Pregnancy , Regeneration/physiology
4.
J Mol Cell Cardiol ; 173: 25-29, 2022 12.
Article in English | MEDLINE | ID: mdl-36122767

ABSTRACT

T-cells contribute to pathophysiological processes in myocardial diseases, including myocardial infarction (MI) and heart failure (HF). Antigen-specificity is a hallmark of T-cell responses but the cardiac antigens that trigger heart-directed T-cell responses in patients have not yet been uncovered, thus posing a roadblock to translation. In the present exploratory study, we identified a peptide fragment of the beta-1 adrenergic receptor (ADRB1) that elicits CD4+ T-cell responses after myocardial infarction in patients with a defined HLA haplotype. Our observations may advance the development of tools to monitor other antigen-specific immune responses in patients.


Subject(s)
CD4-Positive T-Lymphocytes , Myocardial Infarction , Humans , Epitopes , Heart
6.
Eur Heart J ; 44(26): 2355-2357, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37165516
7.
Cardiovasc Res ; 119(14): 2458-2468, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37141306

ABSTRACT

AIMS: Aging entails profound immunological transformations that can impact myocardial homeostasis and predispose to heart failure. However, preclinical research in the immune-cardiology field is mostly conducted in young healthy animals, which potentially weakens its translational relevance. Herein, we sought to investigate how the aging T-cell compartment associates with changes in myocardial cell biology in aged mice. METHODS AND RESULTS: We phenotyped the antigen-experienced effector/memory T cells purified from heart-draining lymph nodes of 2-, 6-, 12-, and 18-month-old C57BL/6J mice using single-cell RNA/T cell receptor sequencing. Simultaneously, we profiled all non-cardiomyocyte cell subsets purified from 2- to 18-month-old hearts and integrated our data with publicly available cardiomyocyte single-cell sequencing datasets. Some of these findings were confirmed at the protein level by flow cytometry. With aging, the heart-draining lymph node and myocardial T cells underwent clonal expansion and exhibited an up-regulated pro-inflammatory transcription signature, marked by an increased interferon-γ (IFN-γ) production. In parallel, all major myocardial cell populations showed increased IFN-γ responsive signature with aging. In the aged cardiomyocytes, a stronger IFN-γ response signature was paralleled by the dampening of expression levels of transcripts related to most metabolic pathways, especially oxidative phosphorylation. Likewise, induced pluripotent stem cells-derived cardiomyocytes exposed to chronic, low grade IFN-γ treatment showed a similar inhibition of metabolic activity. CONCLUSIONS: By investigating the paired age-related alterations in the T cells found in the heart and its draining lymph nodes, we provide evidence for increased myocardial IFN-γ signaling with age, which is associated with inflammatory and metabolic shifts typically seen in heart failure.


Subject(s)
Heart Failure , Immunosenescence , Mice , Animals , Interferon-gamma , Mice, Inbred C57BL , Aging/genetics , Heart Failure/genetics
8.
JACC Basic Transl Sci ; 8(12): 1539-1554, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38205347

ABSTRACT

Irreversible fibrosis is a hallmark of myocardial infarction (MI) and heart failure. Extracellular matrix protein-1 (ECM-1) is up-regulated in these hearts, localized to fibrotic, inflammatory, and perivascular areas. ECM-1 originates predominantly from fibroblasts, macrophages, and pericytes/vascular cells in uninjured human and mouse hearts, and from M1 and M2 macrophages and myofibroblasts after MI. ECM-1 stimulates fibroblast-to-myofibroblast transition, up-regulates key fibrotic and inflammatory pathways, and inhibits cardiac fibroblast migration. ECM-1 binds HuCFb cell surface receptor LRP1, and LRP1 inhibition blocks ECM-1 from stimulating fibroblast-to-myofibroblast transition, confirming a novel ECM-1-LRP1 fibrotic signaling axis. ECM-1 may represent a novel mechanism facilitating inflammation-fibrosis crosstalk.

9.
Med ; 3(2): 85-86, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35590210

ABSTRACT

Cell therapy with genetically engineered T cells has revolutionized the treatment of malignant diseases, but its potential use beyond the realms of oncology has been underexplored. In a recent study, Rurik et al.1 built on the technologies underlying mRNA vaccines to transduce T cells in vivo, harnessing them to target cardiac fibrosis.


Subject(s)
Neoplasms , T-Lymphocytes , Cell Engineering , Genetic Engineering , Humans , Medical Oncology
10.
Cardiovasc Res ; 117(13): 2664-2676, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34048536

ABSTRACT

AIMS: Recent studies have revealed that B cells and antibodies can influence inflammation and remodelling following a myocardial infarction (MI) and culminating in heart failure-but the mechanisms underlying these observations remain elusive. We therefore conducted in mice a deep phenotyping of the post-MI B-cell responses in infarcted hearts and mediastinal lymph nodes, which drain the myocardium. Thereby, we sought to dissect the mechanisms controlling B-cell mobilization and activity in situ. METHODS AND RESULTS: Histological, flow cytometry, and single-cell RNA-sequencing (scRNA-seq) analyses revealed a rapid accumulation of diverse B-cell subsets in infarcted murine hearts, paralleled by mild clonal expansion of germinal centre B cells in the mediastinal lymph nodes. The repertoire of cardiac B cells was largely polyclonal and showed no sign of antigen-driven clonal expansion. Instead, it included a distinct subset exclusively found in the heart, herein termed 'heart-associated B cells' (hB) that expressed high levels of Cd69 as an activation marker, C-C-chemokine receptor type 7 (Ccr7), CXC-chemokine receptor type 5 (Cxcr5), and transforming growth factor beta 1 (Tgfb1). This distinct signature was not shared with any other cell population in the healing myocardium. Moreover, we detected a myocardial gradient of CXC-motif chemokine ligand 13 (CXCL13, the ligand of CXCR5) on Days 1 and 5 post-MI. When compared with wild-type controls, mice treated with a neutralizing CXCL13-specific antibody as well as CXCR5-deficient mice showed reduced post-MI infiltration of B cells and reduced local Tgfb1 expression but no differences in contractile function nor myocardial morphology were observed between groups. CONCLUSION: Our study reveals that polyclonal B cells showing no sign of antigen-specificity readily infiltrate the heart after MI via the CXCL13-CXCR5 axis and contribute to local TGF-ß1 production. The local B-cell responses are paralleled by mild antigen-driven germinal centre reactions in the mediastinal lymph nodes that might ultimately lead to the production of specific antibodies.


Subject(s)
B-Lymphocyte Subsets/metabolism , Cell Proliferation , Chemokine CXCL13/metabolism , Chemotaxis, Leukocyte , Lymph Nodes/metabolism , Lymphocyte Activation , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptors, CXCR5/metabolism , Animals , B-Lymphocyte Subsets/immunology , Chemokine CXCL13/genetics , Chemokines/genetics , Chemokines/metabolism , Disease Models, Animal , Immunoglobulins/metabolism , Lymph Nodes/immunology , Male , Mice, Inbred C57BL , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardium/immunology , Myocardium/pathology , Phenotype , RNA-Seq , Receptors, CXCR5/genetics , Signal Transduction , Single-Cell Analysis , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL