Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Environ Sci Technol ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332486

ABSTRACT

Plastic debris, including nanoplastic particles (NPPs), has emerged as an important global environmental issue due to its detrimental effects on human health, ecosystems, and climate. Atmospheric processes play an important role in the transportation and fate of plastic particles in the environment. In this study, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was employed to establish the first online approach for identification and quantification of airborne submicrometer polystyrene (PS) NPPs from laboratory-generated and ambient aerosols. The fragmentation ion C8H8+ is identified as the major tracer ion for PS nanoplastic particles, achieving an 1-h detection limit of 4.96 ng/m3. Ambient PS NPPs measured at an urban location in Texas are quantified to be 30 ± 20 ng/m3 by applying the AMS data with a constrained positive matrix factorization (PMF) method using the multilinear engine (ME-2). Careful analysis of ambient data reveals that atmospheric PS NPPs were enhanced as air mass passed through a waste incinerator plant, suggesting that incineration of waste may serve as a source of ambient NPPs. The online quantification of NPPs achieved through this study can significantly improve our understanding of the source, transport, fate, and climate effects of atmospheric NPPs to mitigate this emerging global environmental issue.

2.
Environ Sci Technol ; 57(42): 15990-15998, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37827494

ABSTRACT

One strategy for mitigating the indoor transmission of airborne pathogens, including the SARS-CoV-2 virus, is irradiation by germicidal UV light (GUV). A particularly promising approach is 222 nm light from KrCl excimer lamps (GUV222); this inactivates airborne pathogens and is thought to be relatively safe for human skin and eye exposure. However, the impact of GUV222 on the composition of indoor air has received little experimental study. Here, we conduct laboratory experiments in a 150 L Teflon chamber to examine the formation of secondary species by GUV222. We show that GUV222 generates ozone (O3) and hydroxyl radicals (OH), both of which can react with volatile organic compounds to form oxidized volatile organic compounds and secondary organic aerosol particles. Results are consistent with a box model based on the known photochemistry. We use this model to simulate GUV222 irradiation under more realistic indoor air scenarios and demonstrate that under some conditions, GUV222 irradiation can lead to levels of O3, OH, and secondary organic products that are substantially elevated relative to normal indoor conditions. The results suggest that GUV222 should be used at low intensities and in concert with ventilation, decreasing levels of airborne pathogens while mitigating the formation of air pollutants.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Ozone , Volatile Organic Compounds , Humans , Air Pollution, Indoor/analysis , Respiratory Aerosols and Droplets , Ozone/analysis
3.
Faraday Discuss ; 226: 382-408, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33475668

ABSTRACT

Organic aerosols, a major constituent of fine particulate mass in megacities, can be directly emitted or formed from secondary processing of biogenic and anthropogenic volatile organic compound emissions. The complexity of volatile organic compound emission sources, speciation and oxidation pathways leads to uncertainties in the key sources and chemistry leading to formation of organic aerosol in urban areas. Historically, online measurements of organic aerosol composition have been unable to resolve specific markers of volatile organic compound oxidation, while offline analysis of markers focus on a small proportion of organic aerosol and lack the time resolution to carry out detailed statistical analysis required to study the dynamic changes in aerosol sources and chemistry. Here we use data collected as part of the joint UK-China Air Pollution and Human Health (APHH-Beijing) collaboration during a field campaign in urban Beijing in the summer of 2017 alongside laboratory measurements of secondary organic aerosol from oxidation of key aromatic precursors (1,3,5-trimethyl benzene, 1,2,4-trimethyl benzene, propyl benzene, isopropyl benzene and 1-methyl naphthalene) to study the anthropogenic and biogenic contributions to organic aerosol. For the first time in Beijing, this study applies positive matrix factorisation to online measurements of organic aerosol composition from a time-of-flight iodide chemical ionisation mass spectrometer fitted with a filter inlet for gases and aerosols (FIGAERO-ToF-I-CIMS). This approach identifies the real-time variations in sources and oxidation processes influencing aerosol composition at a near-molecular level. We identify eight factors with distinct temporal variability, highlighting episodic differences in OA composition attributed to regional influences and in situ formation. These have average carbon numbers ranging from C5-C9 and can be associated with oxidation of anthropogenic aromatic hydrocarbons alongside biogenic emissions of isoprene, α-pinene and sesquiterpenes.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Beijing , Humans , Mass Spectrometry , Particulate Matter/analysis
4.
Environ Sci Technol ; 55(10): 6594-6601, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33900726

ABSTRACT

Organic oxidation reactions in the atmosphere can be challenging to parse due to the large number of branching points within each molecule's reaction mechanism. This complexity can complicate the attribution of observed effects to a particular chemical pathway. In this study, we simplify the chemistry of atmospherically relevant systems, and particularly the role of NOx, by generating individual alkoxy radicals via alkyl nitrite photolysis (to limit the number of accessible reaction pathways) and measuring their product distributions under different NO/NO2 ratios. Known concentrations of NO in the classically "high-NO" range are maintained in the chamber, thereby constraining first-generation RO2 (peroxy radicals) to react nearly exclusively with NO. Products are measured in both the gas phase (with a proton-transfer reaction mass spectrometer) and the particle phase (with an aerosol mass spectrometer). We observe substantial differences in measured products under varying NO/NO2 ratios (from ∼0.1 to >1); along with modeling simulations using the Master Chemical Mechanism (MCM), these results suggest indirect effects of NOx chemistry beyond the commonly cited RO2 + NO reaction. Specifically, lower-NO/NO2 ratios foster higher concentrations of secondary OH, higher concentrations of peroxyacyl nitrates (PAN, an atmospheric reservoir species), and a more highly oxidized product distribution that results in more secondary organic aerosol (SOA). The impact of NOx concentration beyond simple RO2 branching must be considered when planning laboratory oxidation experiments and applying their results to atmospheric conditions.


Subject(s)
Atmosphere , Nitrogen Dioxide , Aerosols , Nitrites , Oxidation-Reduction
5.
Environ Sci Technol ; 55(8): 4410-4419, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33793220

ABSTRACT

Nitrated phenols (NPs) are important atmospheric pollutants that affect air quality, radiation, and health. The recent development of the time-of-flight chemical ionization mass spectrometer (ToF-CIMS) allows quantitative online measurements of NPs for a better understanding of their sources and environmental impacts. Herein, we deployed nitrate ions as reagent ions in the ToF-CIMS and quantified six classes of gaseous NPs in Beijing. The concentrations of NPs are in the range of 1 to 520 ng m-3. Nitrophenol (NPh) has the greatest mean concentration. Dinitrophenol (DNP) shows the greatest haze-to-clean concentration ratio, which may be associated with aqueous production. The high concentrations and distinct diurnal profiles of NPs indicate a strong secondary formation to overweigh losses, driven by high emissions of precursors, strong oxidative capacity, and high NOx levels. The budget analysis on the basis of our measurements and box-model calculations suggest a minor role of the photolysis of NPs (<1 ppb h-1) in producing OH radicals. NPs therefore cannot explain the underestimated OH production in urban environments. Discrepancies between these results and the laboratory measurements of the NP photolysis rates indicate the need for further studies aimed at understanding the production and losses of NPs in polluted urban environments.


Subject(s)
Air Pollutants , Nitrates , Air Pollutants/analysis , Beijing , Environmental Monitoring , Gases/analysis , Phenols/analysis
6.
Nature ; 506(7489): 476-9, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24572423

ABSTRACT

Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.


Subject(s)
Aerosols/chemistry , Models, Chemical , Volatile Organic Compounds/chemistry , Aerosols/analysis , Aerosols/metabolism , Atmosphere/chemistry , Bicyclic Monoterpenes , Climate , Ecosystem , Finland , Gases/analysis , Gases/chemistry , Monoterpenes/chemistry , Oxidation-Reduction , Ozone/chemistry , Particle Size , Trees/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Volatilization
8.
Environ Sci Technol ; 53(21): 12366-12378, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31490675

ABSTRACT

Glass transitions of secondary organic aerosols (SOA) from liquid/semisolid to solid phase states have important implications for aerosol reactivity, growth, and cloud formation properties. In the present study, glass transition temperatures (Tg) of isoprene SOA components, including isoprene hydroxy hydroperoxide (ISOPOOH), isoprene-derived epoxydiols (IEPOX), 2-methyltetrols, and 2-methyltetrol sulfates, were measured at atmospherically relevant cooling rates (2-10 K/min) by thin film broadband dielectric spectroscopy. The results indicate that 2-methyltetrol sulfates have the highest glass transition temperature, while ISOPOOH has the lowest glass transition temperature. By varying the cooling rate of the same compound from 2 to 10 K/min, the Tg of these compounds increased by 4-5 K. This temperature difference leads to a height difference of 400-800 m in the atmosphere for the corresponding updraft induced cooling rates, assuming a hygroscopicity value (κ) of 0.1 and relative humidity less than 95%. The Tg of the organic compounds was found to be strongly correlated with volatility, and a semiempirical formula between glass transition temperatures and volatility was derived. The Gordon-Taylor equation was applied to calculate the effect of relative humidity (RH) and water content at five mixing ratios on the Tg of organic aerosols. The model shows that Tg could drop by 15-40 K as the RH changes from <5 to 90%, whereas the mixing ratio of water in the particle increases from 0 to 0.5. These results underscore the importance of chemical composition, updraft rates, and water content (RH) in determining the phase states and hygroscopic properties of organic particles.


Subject(s)
Atmosphere , Dielectric Spectroscopy , Aerosols , Phase Transition , Volatilization
9.
Environ Sci Technol ; 51(11): 5932-5940, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28445044

ABSTRACT

Highly oxygenated multifunctional organic compounds (HOMs) originating from biogenic emissions constitute a widespread source of organic aerosols in the pristine atmosphere. However, the molecular forms in which HOMs are present in the condensed phase upon gas-particle partitioning remain unclear. In this study, we show that highly oxygenated molecules that contain multiple peroxide functionalities are readily cationized by the attachment of Na+ during electrospray ionization operated in the positive ion mode. With this method, we present the first identification of HOMs characterized as C8-10H12-18O4-9 monomers and C16-20H24-36O8-14 dimers in α-pinene derived secondary organic aerosol (SOA). Simultaneous detection of these molecules in the gas phase provides direct evidence for their gas-to-particle conversion. Molecular properties of particulate HOMs generated from ozonolysis and OH oxidation of unsubstituted (C10H16) and deuterated (C10H13D3) α-pinene are investigated using coupled ion mobility spectrometry with mass spectrometry. The systematic shift in the mass of monomers in the deuterated system is consistent with the decomposition of isomeric vinylhydroperoxides to release vinoxy radical isotopologues, the precursors to a sequence of autoxidation reactions that ultimately yield HOMs in the gas phase. The remarkable difference observed in the dimer abundance under O3- versus OH-dominant environments underlines the competition between intramolecular hydrogen migration of peroxy radicals and their bimolecular termination reactions. Our results provide new and direct molecular-level information for a key component needed for achieving carbon mass closure of α-pinene SOA.


Subject(s)
Aerosols , Air Pollutants , Monoterpenes , Bicyclic Monoterpenes , Ozone
10.
Environ Sci Technol ; 51(15): 8491-8500, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28644613

ABSTRACT

We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ∼20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions.


Subject(s)
Aerosols , Organic Chemicals , Mass Spectrometry , Thermography , Volatilization
11.
Environ Sci Technol ; 50(18): 9889-99, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27466979

ABSTRACT

Atmospheric oxidation of isoprene under low-NOx conditions leads to the formation of isoprene hydroxyhydroperoxides (ISOPOOH). Subsequent oxidation of ISOPOOH largely produces isoprene epoxydiols (IEPOX), which are known secondary organic aerosol (SOA) precursors. Although SOA from IEPOX has been previously examined, systematic studies of SOA characterization through a non-IEPOX route from 1,2-ISOPOOH oxidation are lacking. In the present work, SOA formation from the oxidation of authentic 1,2-ISOPOOH under low-NOx conditions was systematically examined with varying aerosol compositions and relative humidity. High yields of highly oxidized compounds, including multifunctional organosulfates (OSs) and hydroperoxides, were chemically characterized in both laboratory-generated SOA and fine aerosol samples collected from the southeastern U.S. IEPOX-derived SOA constituents were observed in all experiments, but their concentrations were only enhanced in the presence of acidified sulfate aerosol, consistent with prior work. High-resolution aerosol mass spectrometry (HR-AMS) reveals that 1,2-ISOPOOH-derived SOA formed through non-IEPOX routes exhibits a notable mass spectrum with a characteristic fragment ion at m/z 91. This laboratory-generated mass spectrum is strongly correlated with a factor recently resolved by positive matrix factorization (PMF) of aerosol mass spectrometer data collected in areas dominated by isoprene emissions, suggesting that the non-IEPOX pathway could contribute to ambient SOA measured in the Southeastern United States.


Subject(s)
Aerosols , Atmosphere/chemistry , Mass Spectrometry , Oxidation-Reduction , Sulfates/chemistry
12.
Environ Sci Technol ; 50(19): 10494-10503, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27626106

ABSTRACT

Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO2+ fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO2+ signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts. In our tests (eight instruments, n = 29), ammonium nitrate (NH4NO3) causes a median CO2+ interference signal of +3.4% relative to nitrate. This interference is highly variable between instruments and with measurement history (percentiles P10-90 = +0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference compared to that of NH4NO3, while the ammonium sulfate ((NH4)2SO4) induced interference was 3-10 times lower. Propagation of the CO2+ interference to other ions during standard AMS and ACSM data analysis affects the calculated OA mass, mass spectra, molecular oxygen-to-carbon ratio (O/C), and f44. The resulting bias may be trivial for most ambient data sets but can be significant for aerosol with higher inorganic fractions (>50%), e.g., for low ambient temperatures, or laboratory experiments. The large variation between instruments makes it imperative to regularly quantify this effect on individual AMS and ACSM systems.


Subject(s)
Aerosols , Mass Spectrometry , Carbon , Sodium Chloride , Sodium Chloride, Dietary
13.
Environ Sci Technol ; 49(17): 10330-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26207427

ABSTRACT

Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 µg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10(-2) to 10 µg m(-3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr(-1) of SOA production, or 3.3% of global SOA.


Subject(s)
Aerosols/analysis , Butadienes/analysis , Hemiterpenes/analysis , Hydrogen Peroxide/analysis , Organic Chemicals/analysis , Pentanes/analysis , Volatile Organic Compounds/analysis , Atmosphere/chemistry , Models, Theoretical , Nitric Oxide/chemistry , Oxidation-Reduction , Southeastern United States , Time Factors , Vapor Pressure , Volatilization
14.
J Phys Chem A ; 119(7): 1154-63, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25654760

ABSTRACT

The atmospheric aging of soot particles, in which various atmospheric processes alter the particles' chemical and physical properties, is poorly understood and consequently is not well-represented in models. In this work, soot aging via heterogeneous oxidation by OH and ozone is investigated using an aerosol flow reactor coupled to a new high-resolution aerosol mass spectrometric technique that utilizes infrared vaporization and single-photon vacuum ultraviolet ionization. This analytical technique simultaneously measures the elemental and organic carbon components of soot, allowing for the composition of both fractions to be monitored. At oxidant exposures relevant to the particles' atmospheric lifetimes (the equivalent of several days of oxidation), the elemental carbon portion of the soot, which makes up the majority of the particle mass, undergoes no discernible changes in mass or composition. In contrast, the organic carbon (which in the case of methane flame soot is dominated by aliphatic species) is highly reactive, undergoing first the addition of oxygen-containing functional groups and ultimately the loss of organic carbon mass from fragmentation reactions that form volatile products. These changes occur on time scales comparable to those of other nonoxidative aging processes such as condensation, suggesting that further research into the combined effects of heterogeneous and condensational aging is needed to improve our ability to accurately predict the climate and health impacts of soot particles.


Subject(s)
Soot/chemistry , Atmosphere/chemistry , Oxidation-Reduction
15.
J Phys Chem A ; 119(19): 4589-99, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25526741

ABSTRACT

Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 °C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores tested in these studies include black carbon, silver, gold, and platinum nanoparticles. These results demonstrate that SP vaporization is capable of providing enhanced organic chemical composition information for a wide range of organic coating materials and IR absorbing particle cores. The potential of using this technique to study organic species of interest in seeded laboratory chamber or flow reactor studies is discussed.


Subject(s)
Aerosols/analysis , Mass Spectrometry/methods , Soot/analysis , Carbon/analysis , Cations/analysis , Citric Acid/analysis , Ethylenes/analysis , Fullerenes/analysis , Gold Compounds/chemistry , Metal Nanoparticles/chemistry , Platinum Compounds/chemistry , Silver Compounds/chemistry , Temperature , Ultraviolet Rays , Vacuum , Volatilization
16.
Environ Sci Technol ; 47(11): 5686-94, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23638946

ABSTRACT

Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). An additional OOA factor that contributed to 33 ± 10% of the organic mass was resolved in summer. This factor had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPOX). Time series of this additional factor is also well correlated (r(2) = 0.59) with IEPOX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methacrylic acid epoxide (MAE)-derived SOA tracer, α-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPOX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = 0.3), measured as H(+) (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry of IEPOX to form SOA.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Butadienes/chemistry , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Epoxy Compounds/chemistry , Hemiterpenes/chemistry , Pentanes/chemistry , Air Pollutants/chemistry , Atmosphere , Bicyclic Monoterpenes , Cities , Georgia , Mass Spectrometry/methods , Mass Spectrometry/standards , Monoterpenes/chemistry , Reference Standards , Seasons
17.
Environ Sci Technol ; 46(10): 5430-7, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22534114

ABSTRACT

Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.


Subject(s)
Aerosols/analysis , Alkanes/chemistry , Hydroxyl Radical/chemistry , Laboratories , Organic Chemicals/analysis , Carbon/analysis , Mass Spectrometry , Mexico , Oxidation-Reduction , Oxygen/analysis , Petroleum Pollution/analysis , Time Factors
18.
J Phys Chem A ; 116(24): 6211-30, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22424261

ABSTRACT

The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.

19.
Anal Bioanal Chem ; 401(10): 3045-67, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21972005

ABSTRACT

Organic species are an important but poorly characterized constituent of airborne particulate matter. A quantitative understanding of the organic fraction of particles (organic aerosol, OA) is necessary to reduce some of the largest uncertainties that confound the assessment of the radiative forcing of climate and air quality management policies. In recent years, aerosol mass spectrometry has been increasingly relied upon for highly time-resolved characterization of OA chemistry and for elucidation of aerosol sources and lifecycle processes. Aerodyne aerosol mass spectrometers (AMS) are particularly widely used, because of their ability to quantitatively characterize the size-resolved composition of submicron particles (PM(1)). AMS report the bulk composition and temporal variations of OA in the form of ensemble mass spectra (MS) acquired over short time intervals. Because each MS represents the linear superposition of the spectra of individual components weighed by their concentrations, multivariate factor analysis of the MS matrix has proved effective at retrieving OA factors that offer a quantitative and simplified description of the thousands of individual organic species. The sum of the factors accounts for nearly 100% of the OA mass and each individual factor typically corresponds to a large group of OA constituents with similar chemical composition and temporal behavior that are characteristic of different sources and/or atmospheric processes. The application of this technique in aerosol mass spectrometry has grown rapidly in the last six years. Here we review multivariate factor analysis techniques applied to AMS and other aerosol mass spectrometers, and summarize key findings from field observations. Results that provide valuable information about aerosol sources and, in particular, secondary OA evolution on regional and global scales are highlighted. Advanced methods, for example a-priori constraints on factor mass spectra and the application of factor analysis to combined aerosol and gas phase data are discussed. Integrated analysis of worldwide OA factors is used to present a holistic regional and global description of OA. Finally, different ways in which OA factors can constrain global and regional models are discussed.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Mass Spectrometry/statistics & numerical data , Organic Chemicals/analysis , Data Interpretation, Statistical , Factor Analysis, Statistical , Mass Spectrometry/methods
20.
ACS Omega ; 6(45): 30726-30733, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34805700

ABSTRACT

Medical shortages during the COVID-19 pandemic saw numerous efforts to 3D print personal protective equipment and treatment supplies. There is, however, little research on the potential biocompatibility of 3D-printed parts using typical polymeric resins as pertaining to volatile organic compounds (VOCs), which have specific relevance for respiratory circuit equipment. Here, we measured VOCs emitted from freshly printed stereolithography (SLA) replacement medical parts using proton transfer reaction mass spectrometry and infrared differential absorption spectroscopy, and particulates using a scanning mobility particle sizer. We observed emission factors for individual VOCs ranging from ∼0.001 to ∼10 ng cm-3 min-1. Emissions were heavily dependent on postprint curing and mildly dependent on the type of SLA resin. Curing reduced the emission of all observed chemicals, and no compounds exceeded the recommended dose of 360 µg/d. VOC emissions steadily decreased for all parts over time, with an average e-folding time scale (time to decrease to 1/e of the starting value) of 2.6 ± 0.9 h.

SELECTION OF CITATIONS
SEARCH DETAIL