Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nature ; 592(7856): 737-746, 2021 04.
Article in English | MEDLINE | ID: mdl-33911273

ABSTRACT

High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.


Subject(s)
Genome , Genomics/methods , Vertebrates/genetics , Animals , Birds , Gene Library , Genome Size , Genome, Mitochondrial , Haplotypes , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Sequence Alignment , Sequence Analysis, DNA , Sex Chromosomes/genetics
2.
PLoS Biol ; 20(9): e3001751, 2022 09.
Article in English | MEDLINE | ID: mdl-36125990

ABSTRACT

Vocal learning is thought to have evolved in 3 orders of birds (songbirds, parrots, and hummingbirds), with each showing similar brain regions that have comparable gene expression specializations relative to the surrounding forebrain motor circuitry. Here, we searched for signatures of these same gene expression specializations in previously uncharacterized brains of 7 assumed vocal non-learning bird lineages across the early branches of the avian family tree. Our findings using a conserved marker for the song system found little evidence of specializations in these taxa, except for woodpeckers. Instead, woodpeckers possessed forebrain regions that were anatomically similar to the pallial song nuclei of vocal learning birds. Field studies of free-living downy woodpeckers revealed that these brain nuclei showed increased expression of immediate early genes (IEGs) when males produce their iconic drum displays, the elaborate bill-hammering behavior that individuals use to compete for territories, much like birdsong. However, these specialized areas did not show increased IEG expression with vocalization or flight. We further confirmed that other woodpecker species contain these brain nuclei, suggesting that these brain regions are a common feature of the woodpecker brain. We therefore hypothesize that ancient forebrain nuclei for refined motor control may have given rise to not only the song control systems of vocal learning birds, but also the drumming system of woodpeckers.


Subject(s)
Songbirds , Animals , Brain Mapping , Cell Nucleus , Male , Prosencephalon , Vocalization, Animal
3.
Front Microbiol ; 15: 1418032, 2024.
Article in English | MEDLINE | ID: mdl-38832111

ABSTRACT

Lymphatic filariasis is caused by parasitic nematodes and is a leading cause of disability worldwide. Many filarial worms contain the bacterium Wolbachia as an obligate endosymbiont. RNA sequencing is a common technique used to study their molecular relationships and to identify potential drug targets against the nematode and bacteria. Ribosomal RNA (rRNA) is the most abundant RNA species, accounting for 80-90% of the RNA in a sample. To reduce sequencing costs, it is necessary to remove ribosomal reads through poly-A enrichment or ribosomal depletion. Bacterial RNA does not contain a poly-A tail, making it difficult to sequence both the nematode and Wolbachia from the same library preparation using standard poly-A selection. Ribosomal depletion can utilize species-specific oligonucleotide probes to remove rRNA through pull-down or degradation methods. While species-specific probes are commercially available for many commonly studied model organisms, there are currently limited depletion options for filarial parasites. Here, we performed total RNA sequencing from Brugia malayi containing the Wolbachia symbiont (wBm) and designed ssDNA depletion probes against their rRNA sequences. We compared the total RNA library to poly-A enriched, Terminator 5'-Phosphate-Dependent Exonuclease treated, NEBNext Human/Bacteria rRNA depleted and our custom nematode probe depleted libraries. The custom nematode depletion library had the lowest percentage of ribosomal reads across all methods, with a 300-fold decrease in rRNA when compared to the total RNA library. The nematode depletion libraries also contained the highest percentage of Wolbachia mRNA reads, resulting in a 16-1,000-fold increase in bacterial reads compared to the other enrichment and depletion methods. Finally, we found that the Brugia malayi depletion probes can remove rRNA from the filarial worm Dirofilaria immitis and the majority of rRNA from the more distantly related free living nematode Caenorhabditis elegans. These custom filarial probes will allow for future dual RNA-seq experiments between nematodes and their bacterial symbionts from a single sequencing library.

4.
Front Microbiol ; 15: 1352378, 2024.
Article in English | MEDLINE | ID: mdl-38426058

ABSTRACT

Genomics can be used to study the complex relationships between hosts and their microbiota. Many bacteria cannot be cultured in the laboratory, making it difficult to obtain adequate amounts of bacterial DNA and to limit host DNA contamination for the construction of metagenome-assembled genomes (MAGs). For example, Wolbachia is a genus of exclusively obligate intracellular bacteria that live in a wide range of arthropods and some nematodes. While Wolbachia endosymbionts are frequently described as facultative reproductive parasites in arthropods, the bacteria are obligate mutualistic endosymbionts of filarial worms. Here, we achieve 50-fold enrichment of bacterial sequences using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) with Brugia malayi nematodes, containing Wolbachia (wBm). ATAC-seq uses the Tn5 transposase to cut and attach Illumina sequencing adapters to accessible DNA lacking histones, typically thought to be open chromatin. Bacterial and mitochondrial DNA in the lysates are also cut preferentially since they lack histones, leading to the enrichment of these sequences. The benefits of this include minimal tissue input (<1 mg of tissue), a quick protocol (<4 h), low sequencing costs, less bias, correct assembly of lateral gene transfers and no prior sequence knowledge required. We assembled the wBm genome with as few as 1 million Illumina short paired-end reads with >97% coverage of the published genome, compared to only 12% coverage with the standard gDNA libraries. We found significant bacterial sequence enrichment that facilitated genome assembly in previously published ATAC-seq data sets from human cells infected with Mycobacterium tuberculosis and C. elegans contaminated with their food source, the OP50 strain of E. coli. These results demonstrate the feasibility and benefits of using ATAC-seq to easily obtain bacterial genomes to aid in symbiosis, infectious disease, and microbiome research.

5.
Genome Biol ; 23(1): 204, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167554

ABSTRACT

BACKGROUND: Many short-read genome assemblies have been found to be incomplete and contain mis-assemblies. The Vertebrate Genomes Project has been producing new reference genome assemblies with an emphasis on being as complete and error-free as possible, which requires utilizing long reads, long-range scaffolding data, new assembly algorithms, and manual curation. A more thorough evaluation of the recent references relative to prior assemblies can provide a detailed overview of the types and magnitude of improvements. RESULTS: Here we evaluate new vertebrate genome references relative to the previous assemblies for the same species and, in two cases, the same individuals, including a mammal (platypus), two birds (zebra finch, Anna's hummingbird), and a fish (climbing perch). We find that up to 11% of genomic sequence is entirely missing in the previous assemblies. In the Vertebrate Genomes Project zebra finch assembly, we identify eight new GC- and repeat-rich micro-chromosomes with high gene density. The impact of missing sequences is biased towards GC-rich 5'-proximal promoters and 5' exon regions of protein-coding genes and long non-coding RNAs. Between 26 and 60% of genes include structural or sequence errors that could lead to misunderstanding of their function when using the previous genome assemblies. CONCLUSIONS: Our findings reveal novel regulatory landscapes and protein coding sequences that have been greatly underestimated in previous assemblies and are now present in the Vertebrate Genomes Project reference genomes.


Subject(s)
Genome , Vertebrates , Animals , Base Composition/genetics , Chromosomes , Genome/genetics , Sequence Analysis, DNA , Vertebrates/genetics
6.
J Comp Neurol ; 529(12): 3206-3221, 2021 08.
Article in English | MEDLINE | ID: mdl-33855704

ABSTRACT

The genetic profile of vertebrate pallia has long driven debate on homology across distantly related clades. Based on an expression profile of the orphan nuclear receptor NR4A2 in mouse and chicken brains, Puelles et al. (The Journal of Comparative Neurology, 2016, 524, 665-703) concluded that the avian lateral mesopallium is homologous to the mammalian claustrum, and the medial mesopallium homologous to the insula cortex. They argued that their findings contradict conclusions by Jarvis et al. (The Journal of Comparative Neurology, 2013, 521, 3614-3665) and Chen et al. (The Journal of Comparative Neurology, 2013, 521, 3666-3701) that the hyperpallium densocellare is instead a mesopallium cell population, and by Suzuki and Hirata (Frontiers in Neuroanatomy, 2014, 8, 783) that the avian mesopallium is homologous to mammalian cortical layers 2/3. Here, we find that NR4A2 is an activity-dependent gene and cannot be used to determine brain organization or species relationships without considering behavioral state. Activity-dependent NR4A2 expression has been previously demonstrated in the rodent brain, with the highest induction occurring within the claustrum, amygdala, deep and superficial cortical layers, and hippocampus. In the zebra finch, we find that NR4A2 is constitutively expressed in the arcopallium, but induced in parts of the mesopallium, and in sparse cells within the hyperpallium, depending on animal stimulus or behavioral state. Basal and induced NR4A2 expression patterns do not discount the previously named avian hyperpallium densocellare as dorsal mesopallium and conflict with proposed homology between the avian mesopallium and mammalian claustrum/insula at the exclusion of other brain regions. Broadly, these findings highlight the importance of controlling for behavioral state and neural activity to genetically define brain cell population relationships within and across species.


Subject(s)
Brain Chemistry/physiology , Brain/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/biosynthesis , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Vocalization, Animal/physiology , Animals , Chickens , Finches , Male , Mice , Species Specificity
7.
SLAS Discov ; 24(5): 537-547, 2019 06.
Article in English | MEDLINE | ID: mdl-30958712

ABSTRACT

The Anti- Wolbachia (A·WOL) consortium at the Liverpool School of Tropical Medicine (LSTM) has partnered with the Global High-Throughput Screening (HTS) Centre at AstraZeneca to create the first anthelmintic HTS for neglected tropical diseases (NTDs). The A·WOL consortium aims to identify novel macrofilaricidal drugs targeting the essential bacterial symbiont ( Wolbachia) of the filarial nematodes causing onchocerciasis and lymphatic filariasis. Working in collaboration, we have validated a robust high-throughput assay capable of identifying compounds that selectively kill Wolbachia over the host insect cell. We describe the development and validation process of this complex, phenotypic high-throughput assay and provide an overview of the primary outputs from screening the AstraZeneca library of 1.3 million compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , High-Throughput Screening Assays , Host-Pathogen Interactions/drug effects , Wolbachia/drug effects , Anti-Bacterial Agents/chemistry , Cell Culture Techniques/methods , Drug Discovery , Elephantiasis, Filarial/drug therapy , Humans , Image Cytometry , Onchocerciasis/drug therapy , Wolbachia/pathogenicity , Wolbachia/ultrastructure
8.
Nat Commun ; 10(1): 11, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30602718

ABSTRACT

Nematodes causing lymphatic filariasis and onchocerciasis rely on their bacterial endosymbiont, Wolbachia, for survival and fecundity, making Wolbachia a promising therapeutic target. Here we perform a high-throughput screen of AstraZeneca's 1.3 million in-house compound library and identify 5 novel chemotypes with faster in vitro kill rates (<2 days) than existing anti-Wolbachia drugs that cure onchocerciasis and lymphatic filariasis. This industrial scale anthelmintic neglected tropical disease (NTD) screening campaign is the result of a partnership between the Anti-Wolbachia consortium (A∙WOL) and AstraZeneca. The campaign was informed throughout by rational prioritisation and triage of compounds using cheminformatics to balance chemical diversity and drug like properties reducing the chance of attrition from the outset. Ongoing development of these multiple chemotypes, all with superior time-kill kinetics than registered antibiotics with anti-Wolbachia activity, has the potential to improve upon the current therapeutic options and deliver improved, safer and more selective macrofilaricidal drugs.


Subject(s)
Drug Discovery , Filaricides/analysis , High-Throughput Screening Assays , Aedes , Animals , Cell Line , Wolbachia
9.
Gigascience ; 6(10): 1-16, 2017 10 01.
Article in English | MEDLINE | ID: mdl-29020750

ABSTRACT

Reference-quality genomes are expected to provide a resource for studying gene structure, function, and evolution. However, often genes of interest are not completely or accurately assembled, leading to unknown errors in analyses or additional cloning efforts for the correct sequences. A promising solution is long-read sequencing. Here we tested PacBio-based long-read sequencing and diploid assembly for potential improvements to the Sanger-based intermediate-read zebra finch reference and Illumina-based short-read Anna's hummingbird reference, 2 vocal learning avian species widely studied in neuroscience and genomics. With DNA of the same individuals used to generate the reference genomes, we generated diploid assemblies with the FALCON-Unzip assembler, resulting in contigs with no gaps in the megabase range, representing 150-fold and 200-fold improvements over the current zebra finch and hummingbird references, respectively. These long-read and phased assemblies corrected and resolved what we discovered to be numerous misassemblies in the references, including missing sequences in gaps, erroneous sequences flanking gaps, base call errors in difficult-to-sequence regions, complex repeat structure errors, and allelic differences between the 2 haplotypes. These improvements were validated by single long-genome and transcriptome reads and resulted for the first time in completely resolved protein-coding genes widely studied in neuroscience and specialized in vocal learning species. These findings demonstrate the impact of long reads, sequencing of previously difficult-to-sequence regions, and phasing of haplotypes on generating the high-quality assemblies necessary for understanding gene structure, function, and evolution.


Subject(s)
Birds/genetics , Animals , Avian Proteins/genetics , Dual Specificity Phosphatase 1/genetics , Early Growth Response Protein 1/genetics , Female , Forkhead Transcription Factors/genetics , Genome , Male , Nerve Tissue Proteins/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL