ABSTRACT
Vehicles are a major source of anthropogenic emissions of carbon monoxide (CO), nitrogen oxides (NOx), and black carbon (BC). CO and NOx are known to be harmful to human health and contribute to ozone formation, while BC absorbs solar radiation that contributes to global warming and also has negative impacts on human health and visibility. Travel restrictions implemented during the COVID-19 pandemic provide researchers the opportunity to study the impact of large, on-road traffic reductions on local air quality. Traffic counts collected along Interstate-95, a major eight-lane highway in Maryland (US), reveal a 60% decrease in passenger car totals and an 8.6% (combination-unit) and 21% (single-unit) decrease in truck traffic counts in April 2020 relative to prior Aprils. The decrease in total on-road vehicles led to the near-elimination in stop-and-go traffic and a 14% increase in the mean vehicle speed during April 2020. Ambient near-road (NR) BC, CO, NOx, and carbon dioxide (CO2) measurements were used to determine vehicular emission ratios (ΔBC/ΔCO, ΔBC/ΔCO2, ΔNOx/ΔCO, ΔNOx/ΔCO2, and ΔCO/ΔCO2), with each ratio defined as the slope value of a linear regression performed on the concentrations of two pollutants within an hour. A decrease of up to a factor of two in ΔBC/ΔCO, ΔBC/ΔCO2, ΔNOx/ΔCO2, and in the fraction of on-road diesel vehicles from weekdays to weekends shows diesel vehicles to be the dominant source of BC and NOx emissions at this NR site. We estimate up to a 70% reduction in BC emissions in April 2020 compared to earlier years, and attribute much of this to lower diesel BC emissions resulting from improvements in traffic flow and fewer instances of acceleration and braking. Future efforts to reduce vehicular BC emissions should focus on improving traffic flow or turbocharger lag within diesel engines. Inferred BC emissions from the NR site also depend on ambient temperature, with an increase of 54% in ΔBC/ΔCO from -5 to 20 °C during the cold season, similar to previous studies that reported increasing BC emissions with rising temperature. The default setting of MOVES3, the current version of the mobile emission model used by the US EPA, does not adjust hot-running BC emissions for ambient temperature. Future work will focus on improving the accuracy of mobile emissions in air quality modeling by incorporating the effects of temperature and traffic flow in the system used to generate mobile emissions input for commonly used air quality models.
ABSTRACT
We use the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine (Bry) from very short-lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Bry are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Bry source from VSLS.
ABSTRACT
A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NOy by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framework (CB6r2 chemistry, MEGAN v2.1 biogenic emissions, 50% reduction in mobile NOx, enhanced representation of isoprene nitrates) that better matches observations. The new model framework attributes 31.4% more surface ozone in Maryland to electric generating units (EGUs) and 34.6% less ozone to on-road mobile sources. Surface ozone becomes more NOx-limited throughout the eastern United States compared to the baseline simulation. The baseline model therefore likely underestimates the effectiveness of anthropogenic NOx reductions as well as the current contribution of EGUs to surface ozone.
ABSTRACT
Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HOx. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 pptv near the surface to ~75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NOx emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.
ABSTRACT
Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.