Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nanotechnology ; 32(41)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34157685

ABSTRACT

As a new member in two-dimensional (2D) transition metal dichalcogenides (TMDCs) family, platinum diselenium (PtSe2) has many excellent properties, such as the layer-dependent band gap, high carrier mobility, high photoelectrical coupling, broadband response, etc, thus it shows good promising application in room temperature photodetectors, broadband photodetectors, transistors and other fields. Furthermore, compared with other TMDCs, PtSe2is chemical inert in ambient, showing nano-devices potential with higher performance and stability. However, up to now, the synthesis and its device applications are in its early stage. This review systematically summarized the state of the art of PtSe2from its structure, property, synthesis and potential application. Finally, the current challenges and future perspectives are outlined for the applications of 2D PtSe2.

2.
ACS Appl Mater Interfaces ; 12(31): 35250-35258, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32660231

ABSTRACT

A broad spectral response is highly desirable for radiation detection in modern optoelectronics; however, it still remains a great challenge. Herein, we report a novel ultrabroadband photodetector based on a high-quality tin monoselenide (SnSe) thin film, which is even capable of detecting photons with energies far below its optical band gap. The wafer-size SnSe ultrathin films are epitaxially grown on sodium chloride via the 45° in-plane rotation by employing a sputtering method. The photodetector delivers sensitive detection to ultraviolet-visible-near infrared (UV-Vis-NIR) lights in the photoconductive mode and shows an anomalous response to long-wavelength infrared at room temperature. Under the mid-infrared light of 10.6 µm, the fabricated photodetector exhibits a large photoresponsivity of 0.16 A W-1 with a fast response rate, which is ∼3 orders of magnitude higher than other results. The thermally induced carriers from the photobolometric effect are responsible for the sub-bandgap response. This mechanism is confirmed by a temperature coefficient of resistance of -2.3 to 4.4% K-1 in the film, which is comparable to that of the commercial bolometric detectors. Additionally, the flexible device transferred onto polymer templates further displays high mechanical durability and stability over 200 bending cycles, indicating great potential toward developing wearable optoelectronic devices.

3.
ACS Appl Mater Interfaces ; 12(44): 49830-49839, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33095577

ABSTRACT

A broadband photodetector with high performance is highly desirable for the optoelectric and sensing application. Herein, we report a "photo-thermo-electric" (PTE) detector based on an ultrathin SnTe film. The (001)-oriented SnTe films with the wafer size scale are epitaxially grown on the surface of sodium chloride crystals by a scalable sputtering method. Due to the giant PTE effect under laser spot excitation on the asymmetric position between two terminals, a built-in electrical field is produced to drive bulk carriers for a self-powered photodetector, leading to a broad spectral response in the wavelength range from 404 nm to 10.6 µm far beyond the limitation of the energy band gap. Significantly, the photodetector displays a high on/off photoswitching ratio of over 105 with a suppressed dark current, which is 4-5 orders of magnitude higher than that of other reported SnTe-based detectors. Under zero external bias, the device yields the highest detectivity of ∼1.3 × 1010 cm Hz1/2 W-1 with a corresponding responsivity of ∼3.9 mA W-1 and short rising/falling times of ∼78/84 ms. Furthermore, the photodetector transferred onto the flexible template exhibits excellent mechanical flexibility over 300 bending cycles. These findings offer feasible strategies toward designing and developing low-power-consumption wearable optoelectronics with competitive performance.

SELECTION OF CITATIONS
SEARCH DETAIL