Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Small ; 18(1): e2104229, 2022 01.
Article in English | MEDLINE | ID: mdl-34791802

ABSTRACT

The treatment of diabetic wounds remains a major challenge in clinical practice, with chronic wounds characterized by multiple drug-resistant bacterial infections, angiopathy, and oxidative damage to the microenvironment. Herein, a novel in situ injectable HA@MnO2 /FGF-2/Exos hydrogel is introduced for improving diabetic wound healing. Through a simple local injection, this hydrogel is able to form a protective barrier covering the wound, providing rapid hemostasis and long-term antibacterial protection. The MnO2 /ε-PL nanosheet is able to catalyze the excess H2 O2 produced in the wound, converting it to O2 , thus not only eliminating the harmful effects of H2 O2 but also providing O2 for wound healing. Moreover, the release of M2-derived Exosomes (M2 Exos) and FGF-2 growth factor stimulates angiogenesis and epithelization, respectively. These in vivo and in vitro results demonstrate accelerated healing of diabetic wounds with the use of the HA@MnO2 /FGF-2/Exos hydrogel, presenting a viable strategy for chronic diabetic wound repair.


Subject(s)
Diabetes Mellitus , Exosomes , Exosomes/metabolism , Fibroblast Growth Factors/metabolism , Humans , Hydrogels , Manganese Compounds , Oxidative Stress , Oxides , Wound Healing
2.
BMC Musculoskelet Disord ; 23(1): 350, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35410232

ABSTRACT

BACKGROUND: We aimed to compare the intraoperative and early postoperative clinical outcomes of using an acromioclavicular joint hook plate (AJHP) versus a locking plate (LP) in the treatment of anterior sternoclavicular joint dislocation. METHODS: Seventeen patients with anterior sternoclavicular joint dislocation were retrospectively analyzed from May 2014 to September 2019. Six patients were surgically treated with an AJHP, and 11 were surgically treated with an LP. Five male and one female patients composed the AJHP group, and nine male and two female patients composed the LP group. The mean age of all patients was 49.5 years. RESULTS: Reduction and fixation were performed with AJHP or LP in all 17 patients. The mean operative blood loss, operative time, and length of incision in the AJHP group were significantly better than those in the LP group. Shoulder girdle movement of the AJHP group was significantly better than that of the LP group. CONCLUSIONS: This study revealed that AJHP facilitated glenohumeral joint motion, reduced the risk of rupture of mediastinal structures, required a shorter incision, and had lesser blood loss and a shorter duration of operation compared with LP. However, some deficiencies require further improvement.


Subject(s)
Acromioclavicular Joint , Joint Dislocations , Shoulder Dislocation , Sternoclavicular Joint , Thoracic Injuries , Acromioclavicular Joint/diagnostic imaging , Acromioclavicular Joint/surgery , Female , Humans , Joint Dislocations/diagnostic imaging , Joint Dislocations/surgery , Male , Middle Aged , Retrospective Studies , Shoulder Dislocation/surgery , Sternoclavicular Joint/diagnostic imaging , Sternoclavicular Joint/surgery , Treatment Outcome
3.
J Cell Mol Med ; 24(11): 6385-6396, 2020 06.
Article in English | MEDLINE | ID: mdl-32307908

ABSTRACT

N6-methyladenosine (m6A) modification has been reported in various diseases and implicated in increasing numbers of biological processes. However, previous studies have not focused on the role of m6A modification in fracture healing. Here, we demonstrated that m6A modifications are decreased during fracture healing and that methyltransferase-like 3 (METTL3) is the main factor involved in the abnormal changes in m6A modifications. Down-regulation of METTL3 promotes osteogenic processes both in vitro and in vivo, and this effect is recapitulated by the suppression of miR-7212-5p maturation. Further studies have shown that miR-7212-5p inhibits osteoblast differentiation in MC3T3-E1 cells by targeting FGFR3. The present study demonstrated an important role of the METTL3/miR-7212-5p/FGFR3 axis and provided new insights on m6A modification in fracture healing.


Subject(s)
Adenosine/analogs & derivatives , Cell Differentiation/genetics , Fracture Healing/genetics , Methyltransferases/metabolism , MicroRNAs/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Adenosine/metabolism , Animals , Cell Line , Gene Expression Regulation , Methylation , Methyltransferases/genetics , Mice, Inbred C57BL , MicroRNAs/genetics , RNA-Binding Proteins/metabolism , Receptor, Fibroblast Growth Factor, Type 3/metabolism
4.
J Nanobiotechnology ; 18(1): 68, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32375794

ABSTRACT

BACKGROUND: Enhancing angiogenesis is critical for accelerating wound healing. Application of different types of exosomes (Exos) to promote angiogenesis represents a novel strategy for enhanced wound repair. Saliva is known to accelerate wound healing, but the underlying mechanisms remain unclear. RESULTS: Our results have demonstrated that saliva-derived exosomes (saliva-Exos) induce human umbilical vein endothelial cells (HUVEC) proliferation, migration, and angiogenesis in vitro, and promote cutaneous wound healing in vivo. Further experiments documented that Ubiquitin-conjugating enzyme E2O (UBE2O) is one of the main mRNAs of saliva-Exos, and activation of UBE2O has effects similar to those of saliva-Exos, both in vitro and in vivo. Mechanistically, UBE2O decreases the level of SMAD family member 6 (SMAD6), thereby activating bone morphogenetic protein 2 (BMP2), which, in turn, induces angiogenesis. CONCLUSIONS: The present work suggests that administration of saliva-Exos and UBE2O represents a promising strategy for enhancing wound healing through promotion of angiogenesis.


Subject(s)
Exosomes/enzymology , Neovascularization, Physiologic/drug effects , Saliva/enzymology , Smad6 Protein/metabolism , Ubiquitin-Conjugating Enzymes , Animals , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/pharmacology , Saliva/cytology , Skin/injuries , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/pharmacology , Wound Healing/drug effects
5.
J Nanobiotechnology ; 18(1): 66, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32345321

ABSTRACT

BACKGROUND: Osteoblast differentiation is a vital process for fracture healing, and exosomes are nanosized membrane vesicles that can deliver therapeutic drugs easily and safely. Macrophages participate in the regulation of various biological processes in vivo, and macrophage-derived exosomes (MD-Exos) have recently been a topic of increasing research interest. However, few study has explored the link between MD-Exos and osteoblast differentiation. Herein, we sought to identify miRNAs differentially expressed between M1 and M2 macrophage-derived exosomes, and to evaluate their roles in the context of osteoblast differentiation. RESULTS: We found that microRNA-5106 (miR-5106) was significantly overexpressed in M2 macrophage-derived exosomes (M2D-Exos), while its expression was decreased in M1 macrophage-derived exosomes (M1D-Exos), and we found that this exosomal miRNA can induce bone mesenchymal stem cell (BMSC) osteogenic differentiation via directly targeting the Salt-inducible kinase 2 and 3 (SIK2 and SIK3) genes. In addition, the local injection of both a miR-5106 agonist or M2D-Exos to fracture sites was sufficient to accelerate healing in vivo. CONCLUSIONS: Our study demonstrates that miR-5106 is highly enriched in M2D-Exos, and that it can be transferred to BMSCs wherein it targets SIK2 and SIK3 genes to promote osteoblast differentiation.


Subject(s)
Cell Differentiation , Exosomes/metabolism , MicroRNAs/metabolism , Osteogenesis , Protein Serine-Threonine Kinases/metabolism , 3' Untranslated Regions , Animals , Antagomirs/metabolism , Coculture Techniques , Exosomes/transplantation , Femoral Fractures/pathology , Femoral Fractures/therapy , Macrophages/cytology , Macrophages/metabolism , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , RNA Interference , RNA, Small Interfering/metabolism
6.
Arch Orthop Trauma Surg ; 140(1): 11-17, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31127408

ABSTRACT

OBJECTIVE: To compare the clinical effect of 3D-printed template technology with X-ray fluoroscopy in assisting surgery for sacroiliac screws placement. DESIGN: Institutional review board-approved retrospective analysis. PATIENTS: The clinical data of 31 cases of sacroiliac complex injury between January 2015 and December 2016 were analyzed. There were 16 patients, males 11 and females 5, who underwent surgery assisted by 3D-printed template in template group, and that of contemporaneous 15 patients, males 11 and females 4, who underwent traditional surgery were gathered as fluoroscopy group. All those patients were followed up for more than 6 months. MAIN OUTCOME MEASURES: The operation time and X-ray fluoroscopy times for each screw placement, and the Matta and Majeed score were analyzed and the difference between the two group was tested. RESULTS: All cases were followed up for 6-20 months, average 11.4 ± 0.6 months. In template group, 19 screws were implanted. Each screw spent 25-38 min, average 27.2 ± 5.3 min, and need 2-5 times fluoroscopy, average 2.7 ± 0.5. The fracture reduction quality was evaluated by Matta score scale: excellent 10, well 4, fair 2, good rate 87.5%; and pelvic function were evaluated by Majeed score scale: excellent 11, well 3, fair 2, and good rate 87.5%. In fluoroscopy group, 17 screws were implanted. Each screw spent 45-70 min, average 60.3 ± 5.8 min, and needs 11-23 times fluoroscopy, average 15.4 ± 3.5. The fracture reduction quality was evaluated by Matta score scale: excellent 7, well 6, fair 2, and good rate 86.7%; and pelvic function was evaluated by Majeed score scale: excellent 6, well 6, fair 3, and good rate 80.0%. The difference in operation time, X-ray fluoroscopy times between template group and fluoroscopy group had statistical significance. But the Matta and Majeed score had no difference between two groups. CONCLUSION: Compared with traditional surgery, 3D-printed template technology-assisted surgery for sacroiliac screws placement in sacroiliac complex injury patients possesses advantage such as shortened operation time and reduced X-ray exposure times. This technology improves the safety profile of this operation and should be further studied in future clinical applications.


Subject(s)
Bone Screws , Fluoroscopy/methods , Ilium , Printing, Three-Dimensional , Sacrum , Female , Fracture Fixation/instrumentation , Fracture Fixation/methods , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Humans , Ilium/diagnostic imaging , Ilium/injuries , Ilium/surgery , Male , Retrospective Studies , Sacrum/diagnostic imaging , Sacrum/injuries , Sacrum/surgery , Surgery, Computer-Assisted/methods
10.
Nanoscale ; 16(17): 8236-8255, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38584466

ABSTRACT

Osteoporosis, characterized by a reduction in bone mineral density, represents a prevalent skeletal disorder with substantial global health implications. Conventional therapeutic strategies, exemplified by bisphosphonates and hormone replacement regimens, though effective, encounter inherent limitations and challenges. Recent years have witnessed the surge of cell-membrane-coated nanoparticles (CMNPs) as a promising intervention for osteoporosis, leveraging their distinct attributes including refined biocompatibility, heightened pharmaceutical payload capacity, as well as targeted drug release kinetics. However, a comprehensive review consolidating the application of CMNPs-based therapy for osteoporosis remains absent within the existing literature. In this review, we provide a concise overview of the distinctive pathogenesis associated with osteoporosis, alongside an in-depth exploration of the physicochemical attributes intrinsic to CMNPs derived from varied cellular sources. Subsequently, we explore the potential utility of CMNPs, elucidating emerging trends in their deployment for osteoporosis treatment through multifaceted therapeutic approaches. By linking the notable attributes of CMNPs with their roles in mitigating osteoporosis, this review serves as a catalyst for further advances in the design of advanced CMNPs tailored for osteoporosis management. Ultimately, such progress is promising for enhancing outcomes in anti-bone loss interventions, paving the way for clinical translation in the near future.


Subject(s)
Cell Membrane , Nanoparticles , Osteoporosis , Humans , Osteoporosis/drug therapy , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Cell Membrane/metabolism , Cell Membrane/chemistry , Drug Delivery Systems , Animals
11.
Bioact Mater ; 34: 366-380, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38269308

ABSTRACT

Oxidative stress, infection, and vasculopathy caused by hyperglycemia are the main barriers for the rapid repair of foot ulcers in patients with diabetes mellitus (DM). In recent times, the discovery of neddylation, a new type of post-translational modification, has been found to regulate various crucial biological processes including cell metabolism and the cell cycle. Nevertheless, its capacity to control the healing of wounds in diabetic patients remains unknown. This study shows that MLN49224, a compound that inhibits neddylation at low concentrations, enhances the healing of diabetic wounds by inhibiting the polarization of M1 macrophages and reducing the secretion of inflammatory factors. Moreover, it concurrently stimulates the growth, movement, and formation of blood vessel endothelial cells, leading to expedited healing of wounds in individuals with diabetes. The drug is loaded into biomimetic macrophage-membrane-coated PLGA nanoparticles (M-NPs/MLN4924). The membrane of macrophages shields nanoparticles from being eliminated in the reticuloendothelial system and counteracts the proinflammatory cytokines to alleviate inflammation in the surrounding area. The extended discharge of MLN4924 from M-NPs/MLN4924 stimulates the growth of endothelial cells and the formation of tubes, along with the polarization of macrophages towards the anti-inflammatory M2 phenotype. By loading M-NPs/MLN4924 into a hydrogel, the final formulation is able to meaningfully repair a diabetic wound, suggesting that M-NPs/MLN4924 is a promising engineered nanoplatform for tissue engineering.

12.
Bioact Mater ; 37: 424-438, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38689661

ABSTRACT

Bone nonunion poses an urgent clinical challenge that needs to be addressed. Recent studies have revealed that the metabolic microenvironment plays a vital role in fracture healing. Macrophages and bone marrow-derived mesenchymal stromal cells (BMSCs) are important targets for therapeutic interventions in bone fractures. Itaconate is a TCA cycle metabolite that has emerged as a potent macrophage immunomodulator that limits the inflammatory response. During osteogenic differentiation, BMSCs tend to undergo aerobic glycolysis and metabolize glucose to lactate. Copper ion (Cu2+) is an essential trace element that participates in glucose metabolism and may stimulate glycolysis in BMSCs and promote osteogenesis. In this study, we develop a 4-octyl itaconate (4-OI)@Cu@Gel nanocomposite hydrogel that can effectively deliver and release 4-OI and Cu2+ to modulate the metabolic microenvironment and improve the functions of cells involved in the fracture healing process. The findings reveal that burst release of 4-OI reduces the inflammatory response, promotes M2 macrophage polarization, and alleviates oxidative stress, while sustained release of Cu2+ stimulates BMSC glycolysis and osteogenic differentiation and enhances endothelial cell angiogenesis. Consequently, the 4-OI@Cu@Gel system achieves rapid fracture healing in mice. Thus, this study proposes a promising regenerative strategy to expedite bone fracture healing through metabolic reprogramming of macrophages and BMSCs.

13.
Biomater Res ; 27(1): 76, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542353

ABSTRACT

Various joint pathologies such as osteochondritis dissecans, osteonecrosis, rheumatic disease, and trauma, may result in severe damage of articular cartilage and other joint structures, ranging from focal defects to osteoarthritis (OA). The osteochondral unit is one of the critical actors in this pathophysiological process. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of OA treatment. Hydrogel scaffolds, a component of tissue engineering, play an indispensable role in osteochondral regeneration. In this review, tissue engineering strategies regarding osteochondral regeneration were highlighted and summarized. The application of hydrogels for osteochondral regeneration within the last five years was evaluated with an emphasis on functionalized physical and chemical properties of hydrogel scaffolds, functionalized delivery hydrogel scaffolds as well as functionalized intelligent response hydrogel scaffolds. Lastly, to serve as guidance for future efforts in the creation of bioinspired hydrogel scaffolds, a succinct summary and new views for specific mechanisms, applications, and existing limitations of the newly designed functionalized hydrogel scaffolds were offered.

14.
Bioact Mater ; 30: 29-45, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37521275

ABSTRACT

The diabetic wounds remain to be unsettled clinically, with chronic wounds characterized by drug-resistant bacterial infections, compromised angiogenesis and oxidative damage to the microenvironment. To ameliorate oxidative stress and applying antioxidant treatment in the wound site, we explore the function of folliculin-interacting protein 1 (FNIP1), a mitochondrial gatekeeper protein works to alter mitochondrial morphology, reduce oxidative phosphorylation and protect cells from unwarranted ROS accumulation. And our in vitro experiments showed the effects of FNIP1 in ameliorating oxidative stress and rescued impaired angiogenesis of HUVECs in high glucose environment. To realize the drug delivery and local regulation of FNIP1 in diabetic wound sites, a novel designed glucose-responsive HA-PBA-FA/EN106 hydrogel is introduced for improving diabetic wound healing. Due to the dynamic phenylboronate ester structure with a phenylboronic acid group between hyaluronic acid (HA) and phenylboronic acid (PBA), the hydrogel is able to realize a glucose-responsive release of drugs. Fulvic acid (FA) is added in the hydrogel, which not only severs as crosslinking agent but also provides antibacterial and anti-inflammatory abilities. Moreover, the release of FEM1b-FNIP1 axis inhibitor EN106 ameliorated oxidative stress and stimulated angiogenesis through FEM1b-FNIP1 axis regulation. These in vivo and in vitro results demonstrated that accelerated diabetic wounds repair with the use of the HA-PBA-FA/EN106 hydrogel, which may provide a promising strategy for chronic diabetic wound repair.

15.
Stem Cells Int ; 2023: 7638842, 2023.
Article in English | MEDLINE | ID: mdl-37274021

ABSTRACT

Bone mesenchymal stem cells (BMSCs) play an important role in maintaining the dynamic balance of bone metabolism. Recent studies have reported that a decrease in the osteogenic function of MSCs is strongly associated with osteoporosis. Melatonin is a neuroendocrine hormone produced in the pineal gland and is essential in the physiological regulation. This study is aimed at exploring the effect of melatonin on MSCs osteoblastic differentiation and elucidate the underlying mechanisms. We isolated BMSCs from rat bone marrow and demonstrated that melatonin improved osteogenic differentiation of BMSCs by the alizarin red staining and ALP staining. We then showed that melatonin enhanced osteogenic gene expression in BMSCs, including ALP, Col 1, OCN, OPN, and RUNX2. We further revealed that melatonin inhibited the inflammatory response of BMSCs by suppressing the NF-κB signaling pathways. In light of this, we found that the NF-κB pathway-specific activator TNF-α activated the NF-κB pathway, inhibited osteogenic differentiation, and induced inflammatory response in BMSCs. Melatonin was found to reverse the inhibitory effect of TNF-α on osteogenic differentiation and inflammation in BMSCs. Taken together, these findings indicated that melatonin may have therapeutic potential to be used for the treatment of osteoporosis.

16.
Adv Mater ; 35(19): e2212300, 2023 May.
Article in English | MEDLINE | ID: mdl-36811203

ABSTRACT

Diabetic wound (DW) therapy is currently a big challenge in medicine and strategies to enhance neurogenesis and angiogenesis have appeared to be a promising direction. However, the current treatments have failed to coordinate neurogenesis and angiogenesis simultaneously, leading to an increased disability rate caused by DWs. Herein, a whole-course-repair system is introduced by a hydrogel to concurrently achieve a mutually supportive cycle of neurogenesis-angiogenesis under a favorable immune-microenvironment. This hydrogel can first be one-step packaged in a syringe for later in situ local injections to cover wounds long-termly for accelerated wound healing via the synergistic effect of magnesium ions (Mg2+ ) and engineered small extracellular vesicles (sEVs). The self-healing and bio-adhesive properties of the hydrogel make it an ideal physical barrier for DWs. At the inflammation stage, the formulation can recruit bone marrow-derived mesenchymal stem cells to the wound sites and stimulate them toward neurogenic differentiation, while providing a favorable immune microenvironment via macrophage reprogramming. At the proliferation stage of wound repair, robust angiogenesis occurs by the synergistic effect of the newly differentiated neural cells and the released Mg2+ , allowing a regenerative neurogenesis-angiogenesis cycle to take place at the wound site. This whole-course-repair system provides a novel platform for combined DW therapy.


Subject(s)
Diabetes Mellitus , Wound Healing , Humans , Hydrogels/pharmacology , Macrophages , Neurogenesis
17.
Biomater Sci ; 11(18): 6035-6059, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37522328

ABSTRACT

Immune homeostasis is delicately mediated by the dynamic balance between effector immune cells and regulatory immune cells. Local deviations from immune homeostasis in the microenvironment of bone fractures, caused by an increased ratio of effector to regulatory cues, can lead to excessive inflammatory conditions and hinder bone regeneration. Therefore, achieving effective and localized immunomodulation of bone fractures is crucial for successful bone regeneration. Recent research has focused on developing localized and specific immunomodulatory strategies using local hydrogel-based delivery systems. In this review, we aim to emphasize the significant role of immune homeostasis in bone regeneration, explore local hydrogel-based delivery systems, discuss emerging trends in immunomodulation for enhancing bone regeneration, and address the limitations of current delivery strategies along with the challenges of clinical translation.


Subject(s)
Fractures, Bone , Hydrogels , Humans , Bone Regeneration , Immunomodulation
18.
Exp Mol Med ; 55(3): 587-596, 2023 03.
Article in English | MEDLINE | ID: mdl-36869070

ABSTRACT

Fracture combined with traumatic brain injury (TBI) is one of the most common and serious types of compound trauma in the clinic and is characterized by dysfunction of cellular communication in injured organs. Our prior studies found that TBI was capable of enhancing fracture healing in a paracrine manner. Exosomes (Exos), as small extracellular vesicles, are important paracrine vehicles for noncell therapy. However, whether circulating Exos derived from TBI patients (TBI-Exos) regulate the prohealing effects of fractures remains unclear. Thus, the present study aimed to explore the biological effects of TBI-Exos on fracture healing and reveal the potential molecular mechanism. TBI-Exos were isolated by ultracentrifugation, and the enriched miR-21-5 p was identified by qRT‒PCR analysis. The beneficial effects of TBI-Exos on osteoblastic differentiation and bone remodeling were determined by a series of in vitro assays. Bioinformatics analyses were conducted to identify the potential downstream mechanisms of the regulatory effect of TBI-Exos on osteoblasts. Furthermore, the role of the potential signaling pathway of TBI-Exos in mediating the osteoblastic activity of osteoblasts was assessed. Subsequently, a murine fracture model was established, and the effect of TBI-Exos on bone modeling was demonstrated in vivo. TBI-Exos can be internalized by osteoblasts, and in vitro, suppression of SMAD7 promoted osteogenic differentiation, whereas knockdown of miR-21-5 p in TBI-Exos strongly inhibited this bone-beneficial effect. Similarly, our results confirmed that preinjection of TBI-Exos led to enhanced bone formation, whereas knockdown of exosomal miR-21-5 p substantially impaired this bone-beneficial effect in vivo.


Subject(s)
Brain Injuries, Traumatic , Exosomes , Fractures, Bone , MicroRNAs , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , Fractures, Bone/genetics , Fractures, Bone/metabolism , Exosomes/genetics , Exosomes/metabolism , Bone Remodeling , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism
19.
Stem Cells Int ; 2022: 6948367, 2022.
Article in English | MEDLINE | ID: mdl-36203882

ABSTRACT

The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.

20.
Ann Transl Med ; 10(19): 1071, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36330408

ABSTRACT

Background: Currently, we found that double reverse traction repositor (DRTR) is a treatment with operation convenience and fast in our clinical work. However, the clinical efficacy and safety of DRTR in the reduction of unstable intertrochanteric fractures in elderly patients remain unknown. Therefore, the study aimed to compare the clinical efficacy and safety of DRTR and traction table (TT) in the reduction of unstable intertrochanteric fractures in elderly patients. Methods: From October 2018 to December 2020, the elderly patients with unstable intertrochanteric fractures were reviewed. 22 patients treated with TT and 20 patients treated with DRTR met the inclusion criteria of this study, and baseline clinical characteristics were recorded. The reduction time, operation time, incision length and intraoperative blood loss were reviewed. The safety outcome was assessed by postoperative complications, and the efficacy outcomes were evaluated by the fracture healing time based on the radiographs conducted at each follow-up (1, 3, 6, 12 months after surgery) and hip function (hip flexion, Harris Hip Score) at the final follow-up (12 months after surgery). Results: There were no significant differences in terms of demographics and fracture characteristics of cases enrolled. In DRTR group, the average intraoperative reduction time [(34.8±7.6) min] and the average operation time [(87.1±12.2) min] were superior to those [(56.6±9.3); (123.1±15.0) min] in TT group (P<0.0001). However, there were no statistical significance in terms of the average incision lengths [(6.4±0.9) vs. (6.8±1.1) cm; P=0.1619], , the average intraoperative blood loss [(152.6±22.9) vs. (146.8±20.7) mL; P=0.3941], the average fracture healing times [(13.8±1.5) vs. (14.4±1.8) weeks; P=0.2350] and the average Harris hip score a year after operation [(84.4±6.6) vs. (82.7±7.2); P=0.4496] between the two groups. One patient in TT group experienced lower extremity intermuscular venous thrombosis postoperatively. No other operation-related complications were observed postoperatively nor during follow-up. Conclusions: Minimally invasive reduction with DRTR in unstable intertrochanteric fractures could effectively shorten the intraoperative reduction time and operation time in this study. Therefore, minimally invasive reduction with DRTR might be a good choice for intertrochanteric reduction of unstable intertrochanteric fractures.

SELECTION OF CITATIONS
SEARCH DETAIL