ABSTRACT
Lithium-based rechargeable dual-ion batteries (DIBs) based on graphite anode-cathode combinations have received much attention due to their high resource abundance and low cost. Currently, the practical realization of the batteries is hindered by easy oxidation of the electrolyte at the cathode interface, and solvent co-intercalation at the anode-electrolyte interface. Configuration of a "solvent-in-salt" electrolyte with a high concentration of Li salt is expected to stabilize the electrolyte chemistry versus both electrodes, yet inevitably reduces the mobility of the solvated working ions and increases the cost of the electrolyte. Herein, we propose to build a localized high-concentration electrolyte by adding hydrofluoroether as the diluent to reduce the salt content while improving the solvation structure, allowing more anions to enter the inner solvation sheath. The new electrolyte helps to form uniform and thin interfaces, with elevated contents of inorganic fluorides, on both electrodes, which effectively suppress electrolyte oxidation at the cathode and optimize electrolyte-electrode compatibility at the anode while facilitating charge transfer across the interface. Consequently, the DIBs with graphite as anode and cathode operate for 3000 cycles and retain a high-capacity retention of 95.7%, highlighting the importance of stable interfacial chemistry in boosting the electrochemical performance of DIBs.
ABSTRACT
Coupled electron/ion transport is a decisive feature of Li plating/stripping, wherein the compatibility of electron/ion transport rates determines the morphology of deposited Li. Local Li+ hotspots form due to inhomogeneous interfacial charge transfer and lead to uncontrolled Li deposition, which decreases the Li utilization rate and safety of Li metal anodes. Herein, we report a method to obtain dendrite-free Li metal anodes by driving electron pumping and accumulating and boosting Li ion diffusion by tuning the work function of a carbon host using cobalt-containing catalysts. The results reveal that increasing the work function provides an electron deviation from C to Co, and electron-rich Co shows favorable binding to Li+ . The Co catalysts boost Li+ diffusion on the carbon fiber scaffolds without local aggregation by reducing the Li+ migration barrier. The as-obtained dendrite-free Li metal anode exhibits a Coulombic efficiency of 99.0 %, a cycle life of over 2000â h, a Li utilization rate of 50 %, and a capacity retention of 83.4 % after 130 cycles in pouch cells at a negative/positive capacity ratio of 2.5. These findings provide a novel strategy to stabilize Li metal by regulating the work function of materials using electrocatalysts.
ABSTRACT
Biomass-derived carbon materials prepared via pyrolysis from natural wood structures show potential for a storage application. Natural wood is composed of multiple carbon sources, including lignin, hemicellulose, and cellulose, which influence the formation and microstructure of pyrolysis carbon. However, the mechanism is not fully understood. In this work, vast lignin is selectively consumed via biodegradation with fungi from basswood. The results demonstrate that the as-prepared carbon material has a short-range ordered graphitic structure after thermal treatment. The improved graphitization degree of carbon suggests that cellulose is beneficial to graphite formation during pyrolysis. The elevated graphitization degree helps to improve the charge transfer and the thermodynamic stability of the electrode reaction. As a proof of concept, the obtained carbon current collector as a sodium-metal anode can undergo cycling at an areal capacity of 10 mAh cm-2 for over 4500 h and yield an excellent Coulombic efficiency of >99.5%.
ABSTRACT
The plating/stripping of Li dendrites can fracture the static solid electrolyte interphase (SEI) and cause significant dynamic volume variations in the Li anode, which give rise to poor cyclability and severe safety hazards. Herein, a tough polymer with a slide-ring structure was designed as a self-adaptive interfacial layer for Li anodes. The slide-ring polymer with a dynamically crosslinked network moves freely while maintaining its toughness and fracture resistance, which allows it can to dissipate the tension induced by Li dendrites on the interphase layer. Moreover, the slide-ring polymer is highly stretchable, elastic, and displays an ultrafast self-healing ability, which allows even pulverized Li to remain coalesced without disintegrating upon consecutive cycling. The Li anodes demonstrate greatly improved suppression of Li dendrite formation, as evidenced by the high critical current density (6â mA cm-2 ) and stable cycling for the full cells with high-areal capacity LiFePO4 , high-voltage NCM, and S cathodes.
ABSTRACT
The development of efficient and stable noble-metal-free electrocatalysts for hydrogen evolution reaction (HER) in alkaline media is still a challenge. Herein, a hybrid material formed by the interconnection of Ni17 W3 intermetallic compound with metallic W is demonstrated for HER. The Ni17 W3 -W hybrid is prepared by the atmosphere- and thermal-induced phase-separation strategy from a single-phase precursor (NiWO4 ), which gives Ni17 W3 -W hybrid abundant and tight interfaces. The theoretical calculation manifests that Ni17 W3 shows more optimized energetics for adsorbed H atom, while W has lower energy barrier for water dissociation, and the synergistic effect between them is believed to facilitate the HER kinetics. Moreover, Ni17 W3 presents a proper adsorption strength for both adsorbed OH and H, and thus Ni17 W3 may also act as a high HER catalyst by itself. As a result, the Ni17 W3 -W hybrid demonstrates high activity and durability for HER in liquid alkaline electrolyte; the electrolyzer assembled by Ni17 W3 -W hybrid and Ni-Fe-layered double hydroxide (LDH) as, respectively, the cathode and anode electrocatalysts presents superior performance to Pt/C-IrO2 benchmark. In addition, the Ni17 W3 -W hybrid also works well in the water electrolyzer based on solid hydroxide exchange membrane. The present work provides a promising pathway to the design of high-performance electrocatalysts.
ABSTRACT
The uncontrolled growth of Li dendrites upon cycling might result in low coulombic efficiency and severe safety hazards. Herein, a lithiophilic binary lithium-aluminum alloy layer, which was generated through an inâ situ electrochemical process, was utilized to guide the uniform metallic Li nucleation and growth, free from the formation of dendrites. Moreover, the formed LiAl alloy layer can function as a Li reservoir to compensate the irreversible Li loss, enabling long-term stability. The protected Li electrode shows superior cycling over 1700â h in a Li|Li symmetric cell.
ABSTRACT
Indium-oxide (In2O3) nanobelts coated by a 5-nm-thick carbon layer provide an enhanced photocatalytic reduction of CO2 to CO and CH4, yielding CO and CH4 evolution rates of 126.6 and 27.9 µmol h-1, respectively, with water as reductant and Pt as co-catalyst. The carbon coat promotes the absorption of visible light, improves the separation of photoinduced electron-hole pairs, increases the chemisorption of CO2, makes more protons from water splitting participate in CO2 reduction, and thereby facilitates the photocatalytic reduction of CO2 to CO and CH4.
ABSTRACT
Lithium-sulfur (Li-S) batteries show advantage of high theoretical capacity. However, the shuttle effect of polysulfides and sluggish sulfur redox kinetics seriously reduce their service life. Inspired by the porous structural features of biomass materials, herein, a functional interlayer is fabricated by silkworm excrement-derived three-dimensional porous carbon accommodating nano sized CoS2 particles (SC@CoS2 ). The porous carbon delivers a high specific surface area, which provides adequate adsorption sites, being responsible for suppressing the shuttle effect of polysulfides. Meanwhile, the porous carbon is favorable for hindering the aggregation of CoS2 and maintaining its high activity during extended cycles, which effectively accelerates the polysulfides conversion kinetics. Moreover, the SC@CoS2 functional interlayer effectively limits the formation of Li dendrites and promotes the uniform deposition of Li on the Li electrode surface. As a result, the CMK-3/S cathode achieves a high initial capacity of 1599.1â mAh g-1 at 0.2â C rate assisted by the polypropylene separator coated with the functional interlayer and 1208.3â mAh g-1 is maintained after the long cycling test. This work provides an insight into the designing of long-lasting catalysts for stable functional interlayer, which encourages the application of biomass-derived porous carbon in high-energy Li-S batteries.
ABSTRACT
Lithium metal is the ultimate anode material for pursuing the increased energy density of rechargeable batteries. However, fatal dendrites growth and huge volume change seriously hinder the practical application of lithium metal batteries (LMBs). In this work, a lithium host that preinstalled CoSe nanoparticles on vertical carbon vascular tissues (VCVT/CoSe) is designed and fabricated to resolve these issues, which provides sufficient Li plating space with a robust framework, enabling dendrite-free Li deposition. Their inherent N sites coupled with the in situ formed lithiophilic Co sites loaded at the interface of VCVT not only anchor the initial Li nucleation seeds but also accelerate the Li+ transport kinetics. Meanwhile, the Li2Se originated from the CoSe conversion contributes to constructing a stable solid-electrolyte interphase with high ionic conductivity. This optimized Li/VCVT/CoSe composite anode exhibits a prominent long-term cycling stability over 3000 h with a high areal capacity of 10 mAh cm-2. When paired with a commercial nickel-rich LiNi0.83Co0.12Mn0.05O2 cathode, the full-cell presents substantially enhanced cycling performance with 81.7% capacity retention after 300 cycles at 0.2 C. Thus, this work reveals the critical role of guiding Li deposition behavior to maintain homogeneous Li morphology and pave the way to stable LMBs.
ABSTRACT
The construction of heterostructures is an effective strategy to enhance electrocatalysis for hydrogen evolution reactions (HERs) and biomass oxidative upgrading. In this work, a Ni/TiO2 heterostructure prepared by a phase-separation strategy was adopted as a bifunctional electrocatalyst for HERs and biomass oxidation in alkaline media. Due to the optimized hydrogen adsorption energetics as well as the interfacial water structure and hydrogen bond connectivity in the electrical double layer, Ni/TiO2 exhibited high activity for HERs with an overpotential of 28 mV at 10 mA cm-2 and good durability at 1000 mA cm-2 for over 100 h in an anion exchange membrane (AEM) electrolyzer. In addition, Ni/TiO2 showed high catalytic performance for the oxidation of biomass-based platform compound 5-hydroxymethylfurfural (HMF) to high-value added compound 2,5-furandicarboxylic acid (FDCA). Continuous production of FDCA with a yield >95% was achieved in the AEM electrolyzer for over 50 h. The superior HMF oxidation performance on the Ni/TiO2 heterostructure compared to Ni resulted from stronger HMF adsorption, lower Ni3+-O formation potential, longer Ni3+-O bond and smaller Ni crystal size.
ABSTRACT
Layered Ni-rich lithium transition metal oxides are promising battery cathodes due to their high specific capacity, but their poor cycling stability due to intergranular cracks in secondary particles restricts their practical applications. Surface engineering is an effective strategy for improving a cathode's cycling stability, but most reported surface coatings cannot adapt to the dynamic volume changes of cathodes. Herein, a self-adaptive polymer (polyrotaxane-co-poly(acrylic acid)) interfacial layer is built on LiNi0.6 Co0.2 Mn0.2 O2 . The polymer layer with a slide-ring structure exhibits high toughness and can withstand the stress caused by particle volume changes, which can prevent the cracking of particles. In addition, the slide-ring polymer acts as a physicochemical barrier that suppresses surface side reactions and alleviates the dissolution of transition metallic ions, which ensures stable cycling performance. Thus, the as-prepared cathode shows significantly improved long-term cycling stability in situations in which cracks may easily occur, especially under high-rate, high-voltage, and high-temperature conditions.
ABSTRACT
Using a soft-template assisted method, well-organized Cu/TiO(2) nanoarchitectured electrode materials with copper nanowires as their own current collectors are synthesized by controlled hydrolysis of tetrabutyl titanate in the presence of Cu-based nanowires, and investigated by SEM, TEM, XRD, Raman spectroscopy and electrochemical tests towards lithium storage. Two types of Cu/TiO(2) nanocomposites with different TiO(2) grain sizes are obtained by using different thermal treatments. The two types of Cu/TiO(2) nanocomposites show much enhanced rate performances compared with bare TiO(2). A high-rate capability (reversible capacity at 7500 mA g(-1) still accounts for 58% of its initial capacity at 50 mA g(-1)) is observed for the Cu/TiO(2) nanocomposite with smaller TiO(2) grain size. The improvements can be attributed to the integrated Cu nanowires as mechanical supports and efficient current collectors. A cell made from the Cu/TiO(2) nanoarchitectured electrodes exhibits promise as an energy storage device with both high energy and high power densities.
Subject(s)
Copper/chemistry , Electric Power Supplies , Lithium/chemistry , Nanocomposites/chemistry , Nanotechnology/instrumentation , Nanowires/chemistry , Titanium/chemistry , Electrodes , Materials Testing , Surface PropertiesABSTRACT
A new facile solution method for the synthesis of high-quality CuInSe(2) nanocrystals with monodispersed size and uniform hexagonal shape was developed. A high-performance hybrid photodetector based on a hybrid film of CuInSe(2) nanocrystals and poly(3-hexylthiophene) was constructed. The device showed distinct "ON" and "OFF" states with a ratio of >100 in photocurrents responding to outside illumination. The high sensitivity and stability of the hybrid device revealed a broad prospect for use of the hybrid material in light detection and signal magnification for the development of large-area, low-cost, lightweight, and foldable products.
ABSTRACT
OBJECTIVE: To investigate whether the WNK lysine deficient protein kinase 4 (WNK4) gene C1155547T polymorphism is associated with essential hypertension (EH) in Xinjiang Kazakhs and to assess the effect of the interaction between this polymorphism and environment factors on EH. METHODS: The study covered 556 hypertension patients and 341 normotensive controls. The C1155547T was determined by Taqman probe real-time PCR method. Some biochemical index such as glucose, triglyceride and total cholesterol were also measured. All of these results were analyzed with Logistic regression analysis. Additive model was applied to assess the effect of interaction between the WNK4 gene C1155547T polymorphism and environment factors on hypertension. RESULTS: The C1155547T polymorphism was consistent with Hardy-Weinberg equilibrium in both the case and control groups. There was significant difference in the genotype frequencies (P=0.003). The T allele frequency was significantly higher in the patient group (P=0.002). Logistic regression analysis revealed that the age, body mass index (BMI), total cholesterol as well as the CT+TT genotype frequency conferred increased risks for EH. Positive interaction between the C1155547T polymorphism and gender, BMI, glucose was observed. The ORs were 3.85 (95%CI:1.23-12.04), 5.91 (95%CI:1.99-17.57) and 8.77 (95%CI:1.04-73.93), respectively. CONCLUSION: The result suggested that the exon 7 C1155547T polymorphism in WNK4 gene might be associated with EH in Xinjiang Kazakhs, the T allele might be the risk factor of essential hypertension. There were interactive effects between the WNK4 gene C1155547T polymorphism and gender, BMI and glucose.
Subject(s)
Asian People/genetics , Hypertension/genetics , Point Mutation , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics , Adult , Asian People/ethnology , China , Female , Humans , Hypertension/ethnology , Male , Middle AgedABSTRACT
It is a great challenge to fabricate electrode with simultaneous high activity for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, a high-performance bifunctional electrode formed by vertically depositing a porous nanoplate array on the surface of nickel foam is provided, where the nanoplate is made up by the interconnection of trinary Ni-Fe-Mo suboxides and Ni nanoparticles. The amorphous Ni-Fe-Mo suboxide and its in situ transformed amorphous Ni-Fe-Mo (oxy)hydroxide acts as the main active species for HER and OER, respectively. The conductive network built by Ni nanoparticles provides rapid electron transfer to active sites. Moreover, the hydrophilic and aerophobic electrode surface together with the hierarchical pore structure facilitate mass transfer. The corresponding water electrolyzer demonstrates low cell voltage (1.50 V @ 10 mA cm-2 and 1.63 V @ 100 mA cm-2) with high durability at 500 mA cm-2 for at least 100 h in 1 m KOH.
ABSTRACT
Rechargeable Li metal batteries are one of the most attractive energy storage systems due to their high energy density. However, the hostless nature of Li, the excessive dendritic growth, and the accumulation of nonactive Li induce severe volume variation of Li anodes. The volume variation can give rise to a fracture of solid electrolyte interphase, continuous consumption of Li and electrolytes, low Coulombic efficiency, fast performance degradation, and finally short cycle life. This Outlook provides a comprehensive understanding of the origin and consequences of Li volume variation. Recent strategies to address this challenge are reviewed from liquid to gel to solid-state electrolyte systems. In the end, guidelines for structural design and fabrication suggestions for future long-life Li composite anodes are presented.
ABSTRACT
A simple method was introduced to synthesize nanomaterials of a new metal selenide, InSe nanowires (NWs). The NWs had diameters ranging from 60 to 250 nm and lengths from several micrometers to tens of micrometers. The photoresponse characteristics of InSe NWs were investigated by fabricating devices based on an individual NW. With the light irradiation on and off, the current of the device could be switched at "high" and "low" current with the "ON/OFF" ratio as high as 50. Moreover, the high stability of the InSe NWs was demonstrated indicating the bright future of NWs for low cost, ultrahigh density nanometer sized photoelectric devices.
ABSTRACT
Red phosphorus (RP) as the anode material for the sodium-ion battery (SIB) possesses a high energy density, but the poor electronic conductivity and huge volume change during Na+ insertion/extraction restrict its application. In this work, the edible fungus slag-derived porous carbon (PC) is adopted as a carbon matrix to combine with RP to form PC@RP composites through a facile vaporization-condensation approach. The conductive porous carbon architecture improves the transfer of electron and Na+ in the composite. The robust carbon framework together with the chemical bonding between PC and RP effectively buffer the huge volumetric change of RP. As a result, the PC@RP composite material delivers a specific capacity of 655.1 mA h g-1 at 0.1 A g-1 with a capacity retention of 87% after 100 charging/discharging cycles. In particular, the full SIB assembled with P2-Na2/3Ni1/3Mn1/3Ti1/3O2 as the cathode material and PC@RP as the anode material exhibits a specific capacity of 77.3 mA h g-1 (based on the mass of cathode material) at 0.5 C, and 85% capacity is retained after 100 charging/discharging cycles.
ABSTRACT
The growth of white-rot fungi is related to the superior infiltrability and biodegradability of hyphae on a lignocellulosic substrate. The superior biodegradability of fungi toward plant substrates affords tailored microstructures, which benefits subsequently high efficient carbonization and chemical activation. Here, the mechanism underlying the direct growth of mushrooms toward the lignocellulosic substrate is elucidated and a fungi-enabled method for the preparation of porous carbons with ultrahigh specific surface area (3439 m2 g-1 ) is developed. Such porous carbons could have potential applications in energy storage, environment treatment, and electrocatalysis. The present study reveals a novel pore formation mechanism in root-colonizing fungi and anticipates a valuable function for fungi in developing the useful porous carbons with a high specific surface area.
ABSTRACT
In this work, agricultural waste edible fungus slag derived nitrogen-doped hierarchical porous carbon (EFS-NPC) was prepared by a simple carbonization and activation process. Owing to the biodegradation and infiltrability of hyphae, this EFS-NPC possessed an ultra-high specific surface area (3342â¯m2/g), large pore volume (1.84â¯cm3/g) and abundant micropores and mesopores. The obtained EFS-NPC could effectively adsorb bisphenol A (BPA) with the maximal adsorption capacity of 1249â¯mg/g and the removal process reached 89.9% of the equilibrium uptake in the first 0.5â¯h. Besides, the EFS-NPC showed much better removal performance towards 2,4-dichlorophenol (2,4-DCP) and methylene blue (MB) than commercial activated carbons (Norit RO 0.8 and DARCO granular activated carbon). Furthermore, adsorption isotherms, thermodynamics and kinetics researches indicated that the adsorption process of BPA was monolayer, exothermic and spontaneous. This research has given evidence that the low-cost EFS-NPC can serve as a high-efficient adsorbent for removing organic contaminants from water.