Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Sensors (Basel) ; 23(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36992064

ABSTRACT

Aiming at the recognition of intelligent retail dynamic visual container goods, two problems that lead to low recognition accuracy must be addressed; one is the lack of goods features caused by the occlusion of the hand, and the other is the high similarity of goods. Therefore, this study proposes an approach for occluding goods recognition based on a generative adversarial network combined with prior inference to address the two abovementioned problems. With DarkNet53 as the backbone network, semantic segmentation is used to locate the occluded part in the feature extraction network, and simultaneously, the YOLOX decoupling head is used to obtain the detection frame. Subsequently, a generative adversarial network under prior inference is used to restore and expand the features of the occluded parts, and a multi-scale spatial attention and effective channel attention weighted attention mechanism module is proposed to select fine-grained features of goods. Finally, a metric learning method based on von Mises-Fisher distribution is proposed to increase the class spacing of features to achieve the effect of feature distinction, whilst the distinguished features are utilized to recognize goods at a fine-grained level. The experimental data used in this study were all obtained from the self-made smart retail container dataset, which contains a total of 12 types of goods used for recognition and includes four couples of similar goods. Experimental results reveal that the peak signal-to-noise ratio and structural similarity under improved prior inference are 0.7743 and 0.0183 higher than those of the other models, respectively. Compared with other optimal models, mAP improves the recognition accuracy by 1.2% and the recognition accuracy by 2.82%. This study solves two problems: one is the occlusion caused by hands, and the other is the high similarity of goods, thus meeting the requirements of commodity recognition accuracy in the field of intelligent retail and exhibiting good application prospects.

2.
Nanotechnology ; 32(23)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33588405

ABSTRACT

All-inorganic cesium lead bromine (CsPbBr3) perovskites quantum dots (QDs) are one of the most photoelectric materials due to their high absorption coefficient, pronounced quantum-size effect, tunable optical property. Here, a self-powered PD based on all-inorganic CsPbBr3perovskites QDs is fabricated and demonstrated. The light-induced pyroelectric effect is utilized to modulate the optoelectronic processes without the external power supply. The working mechanism of the PD is carefully investigated upon 532 nm laser illumination and the minimum recognizable response time of the self-powered PD is 1.5µs, which are faster than those of most previously reported wurtzite nanostructure PDs. Meanwhile, the frequency and temperature independence of the self-powered PD are experimented and summarized. The self-powered PD with high performance is expected to have extensive applications in solar cell, energy harvesting, resistive random access memory.

3.
Sensors (Basel) ; 18(12)2018 Dec 08.
Article in English | MEDLINE | ID: mdl-30544777

ABSTRACT

Humidity sensors allow electronic devices to convert the water content in the environment into electronical signals by utilizing material properties and transduction techniques. Three-dimensional graphene foam (3DGF) can be exploited in humidity sensors due to its convenient features including low-mass density, large specific surface area, and excellent electrical. In this paper, 3DGF with super permeability to water enables humidity sensors to exhibit a broad relative humidities (RH) range, from 0% to 85.9%, with a fast response speed (response time: ~89 ms, recovery time: ~189 ms). To interpret the physical mechanism behind this, we constructed a 3DGF model decorated with water to calculate the energy structure and we carried out the CASTEP as implemented in Materials Studio 8.0. This can be ascribed to the donor effect, namely, the electronic donation of chemically adsorbed water molecules to the 3DGF surface. Furthermore, this device can be used for user interaction (UI) with unprecedented performance. These high performances support 3DGF as a promising material for humidity sensitive material.

4.
Nanotechnology ; 28(14): 145201, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28184032

ABSTRACT

A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.

6.
Nanotechnology ; 28(24): 245202, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28319039

ABSTRACT

Graphene quantum dots (GQDs) have received much research attention, because of their useful structure and optical absorption/emission. We report the tunable amplified spontaneous emission (ASE) in GQD-doped cholesteric liquid crystal (CLC), which to the best of our knowledge has not been previously observed. The GQDs are uniformly dispersed with a weight ratio of 0.5 wt.% in CLC. Under optical excitation, typical ASE is triggered in the system at pump energies greater than 1.25 mJ cm-2. The emission peak at the long wavelength edge of the photonic bandgap shifts from 662 to 669 nm, as the working temperature is increased from 50 to 90 °C. The preparation of the combined GQDs and CLC is simple and low-cost, and the resulting material is photostable and non-toxic. Combining the GQD gain material with the self-assembled CLC resonator has potential in the fabrication of ASE source and laser devices.

7.
Opt Express ; 24(9): 9325-31, 2016 May 02.
Article in English | MEDLINE | ID: mdl-27137548

ABSTRACT

We report random lasing in colloidal quantum dots (CQDs) doped disordered polymer. The CdSe/ZnS core-shell CQDs are dispersed in hybrid polymer including two types of monomers with different rates of polymerization. After UV curing, spatially localized random resonators are formed owing to long range refractive-index fluctuations in inhomogeneous polymer with gain. Upon the optical excitation, random lasing action is triggered above the threshold of 7mJ/cm2. Through the investigation on the spectral characteristics of random laser, the wavelengths of random lasers strongly depend on pump position, which confirms that random laser modes originate from spatially localized resnonators. According to power Fourier transform of emission spectrum, the average size of equivalent micro resonators is attributed to be 50 µm. The proposed method provides a facile route to develop random lasers based on CQDs, showing potential applications on random fiber laser and laser displays.

9.
Nanotechnology ; 27(26): 26LT01, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27196786

ABSTRACT

Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm(-2), which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm(-2)). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.

10.
Nanotechnology ; 27(42): 425204, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27623533

ABSTRACT

Here, vertical field effect phototransistors (VFEPTs) based on lead selenide colloidal quantum dots (PbSe CQDs) for infrared photo detection were investigated, using Au/Ag nanowires as the source transparent electrode. VFEPTs have the advantage of easy fabrication of ultrashort channel length devices, as the channel length is simply determined here by the PbSe CQDs active layer's thickness (260 nm). In ultrashort channels, photo-excited carriers quickly (in nanoseconds) transfer to the drain. As soon as a hole (electron) reaches the drain, a hole (electron) is replenished from the source. Accordingly, multiple holes circulate in the ultrashort channel following a single electron-hole photo generation. As a result, the device exhibits superior photoconductive properties over the lateral structure. PbSe CQD VFEPTs show ambipolar operation under low voltage down to one volt at room temperature. Moreover, high photo responsivity and high specific detectivity of 2 × 10(4) A W(-1) and 7 × 10(12) Jones are also achieved in the devices under 808 nm laser illumination. The transparent electrode-based near infrared VFEPTs prepared through this self-assembly solution process show promise for applications in electronics and photoelectronics.

11.
Nanotechnology ; 27(40): 405201, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27578613

ABSTRACT

Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 10(5) and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device.

12.
Appl Opt ; 55(21): 5702-6, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27463926

ABSTRACT

The resonance characteristics of platinum-scatter-based random lasers from dye-doped polymer-dispersed liquid crystals (DDPDLCs) in capillary tubes were researched for the first time, to the best of our knowledge. After adding platinum nanoparticles (Pt NPs) into the liquid crystal mixtures, the emission spectra of DDPDLCs revealed a lower lasing threshold in comparison with those of DDPDLCs without Pt NPs due to light scattering of liquid crystal droplets and the local field enhancement around Pt NPs. Furthermore, the full width at half-maximum (FWHM) and the lasing threshold were determined by the doping density of the Pt NPs. The threshold was decreased by about half from 17.5 µJ/pulse to 8.7 µJ/pulse on the condition that around 1.0 wt. % was the optimum concentration of Pt NPs doped into the DDPDLCs. The FWHM of the peaks sharply decreased to 0.1 nm. Our work provides an extremely simple method to enhance random lasers from DDPDLCs doped with Pt NPs, and it has potential applications in random fiber lasers or laser displays.

13.
Nanotechnology ; 26(33): 335201, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26226558

ABSTRACT

Phototransistors based on graphene-quantum dot hybrids have a high responsivity and gain. However, the influence of the type of heterojunction on the photoresponse of the transistors is still undetermined. A comparison was performed on field-effect phototransistors (FEpTs) with two types of heterojunctions: layered heterojunctions (LHs) and bulk heterojunctions (BHs). Through a comparative study, it was shown that BH-FEpTs had electron and hole mobilities (µE and µH) of 677 and 527 cm(2) V(-1) s(-1) whereas LH-FEpTs had lower mobilities of µE = 314 cm(2) V(-1) s(-1) and µH = 367 cm(2) V(-1) s(-1). The large interfacial area in the BHs reduced the degree of channel order (α) by two orders of magnitude compared with the LHs. Although a higher mobility was achieved, an increase in the degree of channel disorder and the lack of an effective transfer mechanism limits the responsivity in BH-FEpTs. Therefore, LH-FEpTs are more appropriate candidates for near infrared phototransistors.

14.
Micromachines (Basel) ; 15(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38930683

ABSTRACT

A novel microchannel heat sink (TFMCHS) with trapezoidal ribs and fan grooves was proposed, and the microchannel was manufactured using selective laser melting technology. Firstly, the temperature and pressure drop at different power levels were measured through experiments and then combined with numerical simulation to explore the complex flow characteristics within TFMCHSs and evaluate the comprehensive performance of microchannel heat sinks based on the thermal enhancement coefficient. The results show that, compared with rectangular microchannel heat sinks (RMCHSs), the average and maximum temperatures of TFMCHSs are significantly reduced, and the temperature distribution is more uniform. This is mainly caused by the periodic interruption and redevelopment of the velocity boundary layer and thermal boundary layer caused by ribs and grooves. And as the heating power increases, the TFMCHS has better heat dissipation performance. When P=33 W and the inlet flow rate is 32.5 mL/min, the thermal enhancement factor reaches 1.26.

15.
J Cereb Blood Flow Metab ; 44(7): 1128-1144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38230663

ABSTRACT

The neural cell adhesion molecule (NCAM) promotes neural development and regeneration. Whether NCAM mimetic peptides could synergize with bone marrow mesenchymal stem cells (BMSCs) in stroke treatment deserves investigation. We found that the NCAM mimetic peptide P2 promoted BMSC proliferation, migration, and neurotrophic factor expression, protected neurons from oxygen-glucose deprivation through ERK and PI3K/AKT activation and anti-apoptotic mechanisms in vitro. Following middle cerebral artery occlusion (MCAO) in rats, P2 alone or in combination with BMSCs inhibited neuronal apoptosis and induced the phosphorylation of ERK and AKT. P2 combined with BMSCs enhanced neurotrophic factor expression and BMSC proliferation in the ischemic boundary zone. Moreover, combined P2 and BMSC therapy induced translocation of nuclear factor erythroid 2-related factor, upregulated heme oxygenase-1 expression, reduced infarct volume, and increased functional recovery as compared to monotreatments. Treatment with LY294002 (PI3K inhibitor) and PD98059 (ERK inhibitor) decreased the neuroprotective effects of combined P2 and BMSC therapy in MCAO rats. Collectively, P2 is neuroprotective while P2 and BMSCs work synergistically to improve functional outcomes after ischemic stroke, which may be attributed to mechanisms involving enhanced BMSC proliferation and neurotrophic factor release, anti-apoptosis, and PI3K/AKT and ERK pathways activation.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neural Cell Adhesion Molecules , Peptides , Recovery of Function , Stroke , Animals , Male , Rats , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Neural Cell Adhesion Molecules/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Recovery of Function/drug effects , Recovery of Function/physiology , Stroke/therapy , Stroke/metabolism
16.
Materials (Basel) ; 16(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048936

ABSTRACT

Pure copper (Cu) material, because of its high thermal conductivity, can be 3D printed to fabricate effective thermal management components. However, in the selective laser melting (SLM) process, due to copper's high optical reflectivity, Cu-based parts need to be printed using high laser power. In this study, we demonstrated 3D printing with a re-melting strategy is able to fabricate high-density and low-surface-roughness pure copper parts using only a moderate laser (350 W) power. The effect of the re-scan to initial scan speed ratio on the printing quality resulting from the re-melting strategy is discussed. The re-melting strategy is likened to a localized annealing process that promotes the recrystallization of the newly formed copper microstructures on the re-scan path. Given a hatch spacing of 0.06 mm and a powder layer thickness of 0.05 mm, Cu samples with 93.8% density and low surface roughness (Sa~22.9 µm) were produced using an optimized scan speed of 200 mm/s and a re-scanning speed of 400 mm/s, with a laser power of 350 W. Our work provides an approach to optimize the laser power for printing pure copper 3D parts with high relative density (low porosity) and low surface roughness while ensuring the lifetime stability of the part. The re-melting strategies have broad implications in 3D printing and are particularly relevant for metals with high reflectivity, such as pure copper.

17.
J Cereb Blood Flow Metab ; 43(6): 882-892, 2023 06.
Article in English | MEDLINE | ID: mdl-36651130

ABSTRACT

The pathogenesis of cerebral atrophy (CA) is not clear. Previous studies show a high incidence of preterm CA in hemodialysis patients. This study aims to investigate the factors influencing CA and to derive a CA prediction nomogram in maintenance-hemodialysis patients. First, brain volumes of hemodialysis patients (≤55 years) were compared against age- and sex-matched healthy controls, and differences were revealed in bilateral insular cisterns width, maximum cerebral sulci width, Evans index, ventricular-brain ratio, frontal atrophy index, and temporal lobe ratio. Then, the patients were divided equally into "no or mild" or "severe" CA groups. Potential factors influencing CA were screened. Kt/V (urea removal index) and hemoglobin levels negatively correlated with CA degree, and were used to establish a nomogram within randomly assigned training and validation patient groups. The areas under the receiver operating characteristic curves (AUROC) for training and validation groups were 0.703 and 0.744, respectively. When potassium and calcium were added to the nomogram, the AUROC for training/validation group increased to 0.748/0.806. The nomogram had optimal AUROC for training (0.759) and validation (0.804) groups when albumin was also included. Hemodialysis patients showed reduced anterior brain volumes and the nomogram established herein may have predictive value for developing CA.


Subject(s)
Renal Dialysis , Urea , Infant, Newborn , Humans , Atrophy , Hemoglobins , Retrospective Studies
18.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36014748

ABSTRACT

Combining tunable properties and various functionalities into a single metamaterial structure has become a novel research hotspot and can be used to tackle great challenges. The multifunctional metamaterial structure that combines absorption, linear-to-circular (LTC) polarization conversion, filtering and switching functions into a single metamaterial device was designed and investigated in this study. The switching of different functions can be achieved based on the phase transition of vanadium dioxide (VO2) and change of graphene chemical potential. When VO2 is in a metal state, the multi-frequency absorption and LTC polarization conversion can be achieved with different chemical potentials. When VO2 is in the insulator state and the polarization angle of incident wave is 45°, the device can be used to select or isolate the incident waves with different polarization states in the frequency region of 1.2-1.8 THz. Furthermore, when the chemical potentials are 0.05 eV and 1.2 eV, the corresponding transmissions of the TE-polarized wave demonstrate the opposite results, realizing the switching functions in the frequency region of 0.88-1.34 THz. In the frequency region above 2 THz, the multi-frequency rejection filter can be achieved. The designed switchable multifunctional metamaterial device can be widely implemented in radar monitoring and communication systems.

19.
ACS Omega ; 7(8): 6834-6842, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252677

ABSTRACT

The development of red emission carbon dots with bright solid-state fluorescence would significantly broaden their application in optoelectronic devices and sensors. Herein, a red-emissive carbon dot-based nanocomposite has been synthesized through chemical bonding with cellulose films. The red emission originating from the surface states of carbon dots was maintained in the cellulose films. Due to the stable chemical bonding, the photoluminescence intensity and emission wavelength remained unchanged for 12 months, and the quantum yield of the composite was enhanced over 4 times. It also showed outstanding stability in water or weak acid-base environments under pHs ranging from 2 to 11. Therefore, the mechanism of chemical bonding that eliminated the defects and preserved the efficient radiative process through surface states was proposed.

20.
Materials (Basel) ; 15(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35329665

ABSTRACT

An improvement in random lasers based on a colloidal quantum dot (QD)/graphene-doped polymer was observed and attributed to multiple light-scattering and graphene surface plasmon resonance. The emission characteristics of quantum dots doped with graphene oxide and reduced graphene oxide were compared. The QD/reduced graphene oxide hybrid exhibited a lower laser emission threshold (~460 µJ/cm2). The emission modes and thresholds were strongly dependent on both the graphene doping concentration and the external temperature. Decreased plasmon coupling was the primary reason for lower QD/graphene laser emission with increasing temperature. The optimum reduced graphene oxide concentration was 0.2 wt.%. This work provides a practical approach to optimizing the threshold and stability of random laser devices, with potential applications in displays, sensors, and anti-counterfeiting labels.

SELECTION OF CITATIONS
SEARCH DETAIL