Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.469
Filter
Add more filters

Publication year range
1.
Cell ; 185(25): 4788-4800.e13, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36413996

ABSTRACT

The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid ß-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.


Subject(s)
Algal Proteins , Chlamydomonas , Chloroplasts , Chloroplasts/metabolism , Cryoelectron Microscopy , Intracellular Membranes/metabolism , Protein Transport , Chlamydomonas/chemistry , Chlamydomonas/cytology , Multiprotein Complexes/metabolism , Algal Proteins/metabolism
2.
Nature ; 624(7991): 442-450, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993714

ABSTRACT

The canonical (caspase-1) and noncanonical (comprising caspases 4, 5 and 11; hereafter, caspase-4/5/11) inflammasomes both cleave gasdermin D (GSDMD) to induce pyroptosis1,2. Whereas caspase-1 processes IL-1ß and IL-18 for maturation3-6, no cytokine target has been firmly established for lipopolysaccharide-activated caspase-4/5/117-9. Here we show that activated human caspase-4, but not mouse caspase-11, directly and efficiently processes IL-18 in vitro and during bacterial infections. Caspase-4 cleaves the same tetrapeptide site in pro-IL-18 as caspase-1. The crystal structure of the caspase-4-pro-IL-18 complex reveals a two-site (binary) substrate-recognition mechanism; the catalytic pocket engages the tetrapeptide, and a unique exosite that critically recognizes GSDMD10 similarly binds to a specific structure formed jointly by the propeptide and post-cleavage-site sequences in pro-IL-18. This binary recognition is also used by caspase-5 as well as caspase-1 to process pro-IL-18. In caspase-11, a structural deviation around the exosite underlies its inability to target pro-IL-18, which is restored by rationally designed mutations. The structure of pro-IL-18 features autoinhibitory interactions between the propeptide and the post-cleavage-site region, preventing recognition by the IL-18Rα receptor. Cleavage by caspase-1, -4 or -5 induces substantial conformational changes of IL-18 to generate two critical receptor-binding sites. Our study establishes IL-18 as a target of lipopolysaccharide-activated caspase-4/5. The finding is paradigm shifting in the understanding of noncanonical-inflammasome-mediated defences and also the function of IL-18 in immunity and disease.


Subject(s)
Inflammasomes , Intracellular Signaling Peptides and Proteins , Humans , Inflammasomes/metabolism , Interleukin-18 , Lipopolysaccharides/pharmacology , Caspases/metabolism , Caspase 1/metabolism , Pyroptosis
3.
Nature ; 611(7935): 271-277, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36070797

ABSTRACT

Conducting polymers (CPs) with high conductivity and solution processability have made great advances since the pioneering work on doped polyacetylene1-3, thus creating the new field of 'organic synthetic metals,4. Various high-performance CPs have been realized, which enable the applications of several organic electronic devices5,6. Nevertheless, most CPs exhibit hole-dominant (p-type) transport behaviour7,8, whereas the development of n-type analogues lags far behind and only a few exhibit metallic state, typically limited by low doping efficiency and ambient instability. Here we present a facilely synthesized highly conductive n-type polymer poly(benzodifurandione) (PBFDO). The reaction combines oxidative polymerization and in situ reductive n-doping, greatly increasing the doping efficiency, and a doping level of almost 0.9 charges per repeating unit can be achieved. The resultant polymer exhibits a breakthrough conductivity of more than 2,000 S cm-1 with excellent stability and an unexpected solution processability without extra side chains or surfactants. Furthermore, detailed investigations on PBFDO show coherent charge-transport properties and existence of metallic state. The benchmark performances in electrochemical transistors and thermoelectric generators are further demonstrated, thus paving the way for application of the n-type CPs in organic electronics.

4.
Cell Mol Life Sci ; 81(1): 86, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349432

ABSTRACT

Glucose-stimulated insulin secretion (GSIS) in pancreatic islet ß-cells primarily relies on electrophysiological processes. Previous research highlighted the regulatory role of KCNH6, a member of the Kv channel family, in governing GSIS through its influence on ß-cell electrophysiology. In this study, we unveil a novel facet of KCNH6's function concerning insulin granule exocytosis, independent of its conventional electrical role. Young mice with ß-cell-specific KCNH6 knockout (ßKO) exhibited impaired glucose tolerance and reduced insulin secretion, a phenomenon not explained by electrophysiological processes alone. Consistently, islets from KCNH6-ßKO mice exhibited reduced insulin secretion, conversely, the overexpression of KCNH6 in murine pancreatic islets significantly enhanced insulin release. Moreover, insulin granules lacking KCNH6 demonstrated compromised docking capabilities and a reduced fusion response upon glucose stimulation. Crucially, our investigation unveiled a significant interaction between KCNH6 and the SNARE protein regulator, Munc18-1, a key mediator of insulin granule exocytosis. These findings underscore the critical role of KCNH6 in the regulation of insulin secretion through its interaction with Munc18-1, providing a promising and novel avenue for enhancing our understanding of the Kv channel in diabetes mechanisms.


Subject(s)
Exocytosis , Insulin , Animals , Mice , Electrophysiological Phenomena , Glucose , Insulin Secretion
5.
Nano Lett ; 24(10): 3051-3058, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427970

ABSTRACT

Construction of a high-quality charge transport layer (CTL) with intimate contact with the substrate via tailored interface engineering is crucial to increase the overall charge transfer kinetics and stability for a bulk-heterojunction (BHJ) organic solar cell (OSC). Here, we demonstrate a surface chemistry strategy to achieve a homogeneous composite hole transport layer (C-HTL) with robust substrate contact by self-assembling two-dimensional tungsten disulfide (WS2) nanosheets on a thin molybdenum oxide (MoO3) film-evaporated indium tin oxide (ITO) substrate. It is found that over such a well-defined C-HTL, WS2 is homogeneously tethered on the ITO/MoO3 substrate stemming from the strong electronic coupling interaction between the building blocks, which enables a favorable interfacial configuration in terms of uniformity. As a result, the D18:L8-BO-based OSC with C-HTL exhibits a power conversion efficiency (PCE) of 19.23%, an 11% improvement over the WS2-based control device, and the highest efficiency among single-junction PEDOT-free binary BHJ OSCs.

6.
Am J Hum Genet ; 108(5): 942-950, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33891857

ABSTRACT

Cerebral cavernous malformations (CCMs) are vascular disorders that affect up to 0.5% of the total population. About 20% of CCMs are inherited because of familial mutations in CCM genes, including CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10, whereas the etiology of a majority of simplex CCM-affected individuals remains unclear. Here, we report somatic mutations of MAP3K3, PIK3CA, MAP2K7, and CCM genes in CCM lesions. In particular, somatic hotspot mutations of PIK3CA are found in 11 of 38 individuals with CCMs, and a MAP3K3 somatic mutation (c.1323C>G [p.Ile441Met]) is detected in 37.0% (34 of 92) of the simplex CCM-affected individuals. Strikingly, the MAP3K3 c.1323C>G mutation presents in 95.7% (22 of 23) of the popcorn-like lesions but only 2.5% (1 of 40) of the subacute-bleeding or multifocal lesions that are predominantly attributed to mutations in the CCM1/2/3 signaling complex. Leveraging mini-bulk sequencing, we demonstrate the enrichment of MAP3K3 c.1323C>G mutation in CCM endothelium. Mechanistically, beyond the activation of CCM1/2/3-inhibited ERK5 signaling, MEKK3 p.Ile441Met (MAP3K3 encodes MEKK3) also activates ERK1/2, JNK, and p38 pathways because of mutation-induced MEKK3 kinase activity enhancement. Collectively, we identified several somatic activating mutations in CCM endothelium, and the MAP3K3 c.1323C>G mutation defines a primary CCM subtype with distinct characteristics in signaling activation and magnetic resonance imaging appearance.


Subject(s)
Hemangioma, Cavernous, Central Nervous System/genetics , MAP Kinase Kinase Kinase 3/genetics , Mutation , Amino Acid Sequence , Class I Phosphatidylinositol 3-Kinases/genetics , Endothelial Cells/metabolism , Germ-Line Mutation , Hemangioma, Cavernous, Central Nervous System/pathology , Human Umbilical Vein Endothelial Cells , Humans , MAP Kinase Kinase Kinase 3/metabolism , MAP Kinase Signaling System , Models, Molecular
7.
Small ; : e2310847, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385814

ABSTRACT

Sensing pressure and temperature are two important functions of human skin that integrate different types of tactile receptors. In this paper, a deformable artificial flexible multi-stimulus-responsive sensor is demonstrated that can distinguish mechanical pressure from temperature by measuring the impedance and the electrical phase at the same frequency without signal interference. The electrical phase, which is used for measuring the temperature, is totally independent of the pressure by controlling the surface micro-shapes and the ion content of the ionic film. By doping the counter-ion exchange reagent into the ionic liquid before pouring, the upper temperature measuring limit increases from 35 to 50 °C, which is higher than the human body temperature and the ambient temperature on Earth. The sensor shows high sensitivity to pressure (up to 0.495 kPa-1 ) and a wide temperature sensing range (-10 to 50 °C). A multimodal ion-electronic skin (IEM -skin) with an 8 × 8 multi-stimulus-responsive sensor array is fabricated and can successfully sense the distribution of temperature and pressure at the same time. Finally, the sensors are used for monitoring the touching motions of a robot-arm finger controlled by a remote interactive glove and successfully detect the touching states and the temperature changes of different objects.

8.
Appl Environ Microbiol ; 90(2): e0110723, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38231769

ABSTRACT

The effects of Neolamarckia cadamba leaves extract (NCLE), with effective ingredients of flavonoids, on antibiotic resistance genes (ARGs) and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation (LPS) were investigated. LPS stimulation increased (P < 0.05) the relative abundance of ARGs and mobile genetic elements (MGEs), such as tet(W/N/W), APH(3')-IIIa, ErmB, tet (44), ANT (6)-Ia, tet(O), tet (32), Vang_ACT_CHL, myrA, ANT (6)-Ib, IncQ1, tniB, and rep2 in cecal contents. However, the difference disappeared (P > 0.05) when NCLE was added at the same time. These differential ARGs and MGEs were mainly correlated (P < 0.01) with Clostridiales bacterium, Lachnospiraceae bacterium, and Candidatus Woodwardibium gallinarum. These species increased in LPS-stimulated broilers and decreased when NCLE was applied at the same time. In feces, LPS stimulation decreased (P < 0.05) the relative abundance of tet(Q), adeF, ErmF, Mef(En2), OXA-347, tet (40), npmA, tmrB, CfxA3, and ISCrsp1, while the LPS + NCLE treated group showed no significant effect (P > 0.05) on these ARGs. These differential ARGs and MGEs in feces were mainly correlated (P < 0.01) with Clostridiales bacterium, Pseudoflavonifractor sp. An184, Flavonifractor sp. An10, Ruminococcaceae bacterium, etc. These species increased in LPS-stimulated broilers and increased when NCLE was applied at the same time. In conclusion, LPS stimulation and NCLE influenced microbial communities and associated ARGs in both cecal contents and feces of broilers. NCLE alleviated the change of ARGs and MGEs in LPS-induced broilers by maintaining the microbial balance.IMPORTANCEAntibiotics showed a positive effect on gut health regulation and growth performance improvement in livestock breeding, but the antimicrobial resistance threat and environment pollution problem are increasingly severe with antibiotics abuse. As alternatives, plant extract containing bioactive substances are increasingly used to improve immunity and promote productivity. However, little is known about their effects on diversity and abundance of ARGs. Here, we investigated the effects of NCLE, with effective ingredients of flavonoids, on ARGs and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation. We found that NCLE reduced the abundance of ARGs in cecal contents of lipopolysaccharide-induced broilers by maintaining the microbial balance. This study provides a comprehensive view of cecal and fecal microbial community, ARGs, and MGEs of broiler following LPS stimulation and NCLE treatment. It might be used to understand and control ARGs dissemination in livestock production.


Subject(s)
Lactobacillales , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Lipopolysaccharides , Chickens/genetics , Genes, Bacterial , Plant Breeding , Drug Resistance, Microbial/genetics , Feces , Bacteria/genetics , Lactobacillales/genetics , Flavonoids/pharmacology
9.
Anal Biochem ; 692: 115572, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38777290

ABSTRACT

Deoxynivalenol (DON) is a common mycotoxin in food that mainly pollutes grain crops and feeds, such as barley, wheat and corn. DON has caused widespread concern in the field of food and feed safety. In this study, a colorimetric immunoassay was proposed based on the aggregation of gold nanoparticles (AuNPs) due to the decomposition of Mn2+ from gold-coated manganese dioxide (AuNP@MnO2) nanosheets. In this study, 2-(dihydrogen phosphate)-l-ascorbic acid (AAP) was hydrolyzed by alkaline phosphatase (ALP) and converted to ascorbic acid (AA). Then, AuNP@MnO2 was reduced to Mn2+ and AuNPs aggregation occurred. Using the unique optical characteristics of AuNPs and AuNP@MnO2, visible color changes realized simple detection of DON with high sensitivity and portability. With increasing DON content, the color changed more obviously. To quantitatively detect DON, pictures can be taken and the blue value can be read by a smartphone. The detection limit (Ic10) of this method was 0.098 ng mL-1, which was 326 times higher than that of traditional competitive ELISA, and the detection range was 0.177-6.073 ng mL-1. This method exhibited high specificity with no cross-reaction in other structural analogs. The average recovery rate of DON in corn flour samples was 89.1 %-110.2 %, demonstrating the high accuracy and stability of this assay in actual sample detection. Therefore, the colorimetric immunoassay can be used for DON-related food safety monitoring.


Subject(s)
Colorimetry , Gold , Manganese , Metal Nanoparticles , Smartphone , Trichothecenes , Colorimetry/methods , Gold/chemistry , Trichothecenes/analysis , Trichothecenes/chemistry , Metal Nanoparticles/chemistry , Immunoassay/methods , Manganese/chemistry , Manganese Compounds/chemistry , Food Contamination/analysis , Oxides/chemistry , Limit of Detection
10.
Nature ; 561(7721): 122-126, 2018 09.
Article in English | MEDLINE | ID: mdl-30111836

ABSTRACT

Immune recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors often activates proinflammatory NF-κB signalling1. Recent studies indicate that the bacterial metabolite D-glycero-ß-D-manno-heptose 1,7-bisphosphate (HBP) can activate NF-κB signalling in host cytosol2-4, but it is unclear whether HBP is a genuine PAMP and the cognate pattern recognition receptor has not been identified. Here we combined a transposon screen in Yersinia pseudotuberculosis with biochemical analyses and identified ADP-ß-D-manno-heptose (ADP-Hep), which mediates type III secretion system-dependent NF-κB activation and cytokine expression. ADP-Hep, but not other heptose metabolites, could enter host cytosol to activate NF-κB. A CRISPR-Cas9 screen showed that activation of NF-κB by ADP-Hep involves an ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with forkhead-associated domain) axis. ADP-Hep directly binds the N-terminal domain of ALPK1, stimulating its kinase domain to phosphorylate and activate TIFA. The crystal structure of the N-terminal domain of ALPK1 and ADP-Hep in complex revealed the atomic mechanism of this ligand-receptor recognition process. HBP was transformed by host adenylyltransferases into ADP-heptose 7-P, which could activate ALPK1 to a lesser extent than ADP-Hep. ADP-Hep (but not HBP) alone or during bacterial infection induced Alpk1-dependent inflammation in mice. Our findings identify ALPK1 and ADP-Hep as a pattern recognition receptor and an effective immunomodulator, respectively.


Subject(s)
Adenosine Diphosphate Sugars/immunology , Burkholderia cenocepacia , Cytosol , Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules/immunology , Protein Kinases/metabolism , Yersinia pseudotuberculosis , Adenosine Diphosphate Sugars/metabolism , Animals , Burkholderia Infections/enzymology , Burkholderia Infections/immunology , Burkholderia Infections/pathology , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/immunology , Burkholderia cenocepacia/metabolism , CRISPR-Cas Systems , Crystallography, X-Ray , Cytokines/biosynthesis , Cytosol/enzymology , Cytosol/immunology , Disaccharides/metabolism , Enzyme Activation , Female , Gene Editing , Immunologic Factors/immunology , Immunologic Factors/metabolism , Immunomodulation , Inflammation/enzymology , Inflammation/immunology , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Models, Molecular , NF-kappa B/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/immunology , Yersinia pseudotuberculosis/metabolism
11.
BMC Public Health ; 24(1): 655, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429684

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a global health issue with noticeably high incidence and mortality. Microsimulation models offer a time-efficient method to dynamically analyze multiple screening strategies. The study aimed to identify the efficient organized CRC screening strategies for Shenzhen City. METHODS: A microsimulation model named CMOST was employed to simulate CRC screening among 1 million people without migration in Shenzhen, with two CRC developing pathways and real-world participation rates. Initial screening included the National Colorectal Polyp Care score (NCPCS), fecal immunochemical test (FIT), and risk-stratification model (RS model), followed by diagnostic colonoscopy for positive results. Several start-ages (40, 45, 50 years), stop-ages (70, 75, 80 years), and screening intervals (annual, biennial, triennial) were assessed for each strategy. The efficiency of CRC screening was assessed by number of colonoscopies versus life-years gained (LYG). RESULTS: The screening strategies reduced CRC lifetime incidence by 14-27 cases (30.9-59.0%) and mortality by 7-12 deaths (41.5-71.3%), yielded 83-155 LYG, while requiring 920 to 5901 colonoscopies per 1000 individuals. Out of 81 screening, 23 strategies were estimated efficient. Most of the efficient screening strategies started at age 40 (17 out of 23 strategies) and stopped at age 70 (13 out of 23 strategies). Predominant screening intervals identified were annual for NCPCS, biennial for FIT, and triennial for RS models. The incremental colonoscopies to LYG ratios of efficient screening increased with shorter intervals within the same test category. Compared with no screening, when screening at the same start-to-stop age and interval, the additional colonoscopies per LYG increased progressively for FIT, NCPCS and RS model. CONCLUSION: This study identifies efficient CRC screening strategies for the average-risk population in Shenzhen. Most efficient screening strategies indeed start at age 40, but the optimal starting age depends on the chosen willingness-to-pay threshold. Within insufficient colonoscopy resources, efficient FIT and NCPCS screening strategies might be CRC initial screening strategies. We acknowledged the age-dependency bias of the results with NCPCS and RS.


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Humans , Adult , Aged , Early Detection of Cancer/methods , Colonoscopy , Risk Factors , Colorectal Neoplasms/prevention & control , Occult Blood , Cost-Benefit Analysis , Mass Screening/methods
12.
Neurosurg Rev ; 47(1): 258, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38839660

ABSTRACT

Administration of acetylsalicylic acid (ASA) at early stage after surgery for spontaneous intracerebral hemorrhage (SICH) may increase the risk of postoperative intracranial bleeding (PIB), because of potential inhibition of platelet function. This study aimed to investigate whether early ASA administration after surgery was related to increased risk of PIB. This retrospective study enrolled SICH patients receiving surgery from September 2019 to December 2022 in seven medical institution. Based on postoperative ASA administration, patients who continuously received ASA more than three days within seven days post-surgery were identified as ASA users, otherwise as non-ASA users. The primary outcome was symptomatic PIB events within seven days after surgery. Incidence of PIB was compared between ASA users and non-ASA users using survival analysis. This study included 744 appropriate patients from 794 SICH patients. PIB occurred in 42 patients. Survival analysis showed no statistical difference between ASA users and non-ASA users in incidence of PIB (P = 0.900). Multivariate Cox analysis demonstrated current smoker (hazard ratio [HR], 2.50, 95%CI, 1.33-4.71, P = 0.005), dyslipidemia (HR = 3.03; 95%CI, 1.31-6.99; P = 0.010) and pre-hemorrhagic antiplatelet therapy (HR = 3.05; 95% CI, 1.64-5.68; P < 0.001) were associated with PIB. Subgroup analysis manifested no significant difference in incidence of PIB between ASA users and non-ASA users after controlling the effect from factors of PIB (i.e., sex, age, current smoker, regular drinker, dyslipidemia, pre-hemorrhagic antiplatelet therapy and hematoma location). This study revealed that early ASA administration to SICH patients after surgery was not related to increased risk of PIB.


Subject(s)
Aspirin , Cerebral Hemorrhage , Platelet Aggregation Inhibitors , Humans , Male , Female , Aspirin/adverse effects , Aspirin/administration & dosage , Aged , Middle Aged , Retrospective Studies , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/administration & dosage , Postoperative Hemorrhage/epidemiology , Risk Factors , Adult , Intracranial Hemorrhages/epidemiology
13.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33712547

ABSTRACT

Among the nine subtypes of human voltage-gated sodium (Nav) channels, the brain and cardiac isoforms, Nav1.1 and Nav1.5, each carry more than 400 missense mutations respectively associated with epilepsy and cardiac disorders. High-resolution structures are required for structure-function relationship dissection of the disease variants. We report the cryo-EM structures of the full-length human Nav1.1-ß4 complex at 3.3 Å resolution here and the Nav1.5-E1784K variant in the accompanying paper. Up to 341 and 261 disease-related missense mutations in Nav1.1 and Nav1.5, respectively, are resolved. Comparative structural analysis reveals several clusters of disease mutations that are common to both Nav1.1 and Nav1.5. Among these, the majority of mutations on the extracellular loops above the pore domain and the supporting segments for the selectivity filter may impair structural integrity, while those on the pore domain and the voltage-sensing domains mostly interfere with electromechanical coupling and fast inactivation. Our systematic structural delineation of these mutations provides important insight into their pathogenic mechanism, which will facilitate the development of precise therapeutic interventions against various sodium channelopathies.


Subject(s)
Channelopathies/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , Cryoelectron Microscopy , Humans , Models, Molecular , Mutation , NAV1.1 Voltage-Gated Sodium Channel/chemistry , NAV1.1 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/chemistry , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Protein Conformation , Protein Subunits , Structure-Activity Relationship
14.
J Fish Dis ; 47(6): e13930, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38349841

ABSTRACT

Large yellow croaker (Larimichthys crocea) is a vital marine-cultured species in China. Large yellow croaker iridovirus (LYCIV) can cause a high mortality rate in L. crocea. Rapid and convenient detection of LYCIV is an urgent demand for diagnosis. In this study, rapid and simple recombinase polymerase amplification (RPA), real-time RPA and RPA combined with lateral flow dipstick (RPA-LFD) methods were developed for the detection of LYCIV based on the conserved sequence of the LYCIV major capsid protein (MCP) gene. With these optimized RPA analyses, LYCIV detection could be completed within 20 min at 40°C. Both RPA and real-time RPA could detect viral DNA as low as 102 copies/µL, while the detection limit of RPA-LFD was 101 copies/µL, and there was no cross-reaction with other aquatic pathogens (KHV, CyHV-2, GCRV-JX01, SVCV, LCDV and LMBV). In practical evaluation of RPA, real-time RPA and RPA-LFD methods, the results showed consistency with the general PCR detection. In short, the developed RPA, real-time RPA and RPA-LFD analyses could be simple, rapid, sensitive and reliable methods for field diagnosis of LYCIV infection and have significant potential in the protection of LYCIV infection.


Subject(s)
DNA Virus Infections , Fish Diseases , Iridovirus , Nucleic Acid Amplification Techniques , Perciformes , Sensitivity and Specificity , Animals , Perciformes/virology , Fish Diseases/virology , Fish Diseases/diagnosis , DNA Virus Infections/veterinary , DNA Virus Infections/diagnosis , DNA Virus Infections/virology , Iridovirus/isolation & purification , Iridovirus/genetics , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , DNA, Viral/genetics , Capsid Proteins/genetics
15.
Article in English | MEDLINE | ID: mdl-38687852

ABSTRACT

Objective: The study aimed to evaluate the impact of OLIF on spinal-pelvic sagittal parameters and its correlation with clinical outcomes in patients with degenerative lumbar spondylolisthesis. Methods: A retrospective analysis of 43 patients (23 males, 20 females) with lumbar 4/5 degenerative spondylolisthesis who underwent OLIF from January 2018 to January 2023 was conducted. Key parameters studied included SP, DH, FH, AS, LL, SS, PT, PI, and LASD. Results: All surgeries were successfully completed according to the original plan, and the minimum follow-up time was greater than 6 months, with a mean operation time of 198.21±51.32 min; the mean intraoperative bleeding volume was 121.00±56.88 ml. The VAS score of lumbar pain and ODI index decreased from the preoperative VAS score, and the ODI index of lower lumbar pain from the preoperative VAS score of 6.50±1.36 and 74.36±6.27 to the postoperative Lumbar pain of 3.20±1.28 and 32.41±8.21, respectively, and the differences were statistically significant (P < .05). 6.27 to 3.20±1.28 and 32.41±8.21 at the final follow-up visit. The differences were statistically significant (P < .05). The results of Pearson correlation analysis showed positive correlation between postoperative LL and FH, SP and AS, VAS (P < .05), and service correlation between SP and SS, LASD (P < .05), and correlation between pre- and post-surgery difference of LL, FH, SP and the improvement rate of ODI and VAS scores (P < .05), with the difference of pre- and post-surgery difference of LL, FH and the ODI, VAS score improvement rate were the strongest correlation. Postoperatively, significant improvements were observed in LL and FH. Pearson correlation analysis indicated a positive correlation between changes in sagittal parameters and clinical outcomes, measured by VAS and ODI scores. Conclusion: The postoperative spine-pelvis sagittal parameters were significantly improved compared with the preoperative ones, and the changes of the spine-pelvis sagittal parameters before and after the operation were correlated with the clinical outcomes, among which the differences of LL and FH had the strongest correlation with the improvement rates of ODI and VAS scores. OLIF effectively improved spinal-pelvic sagittal parameters and clinical outcomes in degenerative lumbar spondylolisthesis, with changes in LL and FH showing the strongest correlation with patient-reported outcome improvements. An oblique lateral interbody fusion can effectively reconstruct spine-pelvis sagittal parameters in patients with degenerative lumbar spondylolisthesis.

16.
Environ Toxicol ; 39(3): 1442-1455, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37987507

ABSTRACT

Engrailed 2 (EN2) is a homeodomain-containing protein that is dysregulated in many types of cancer. However, the role of EN2 in non-small cell lung cancer (NSCLC) and the mechanism underlying its biological function are largely unclear. Here, we showed that EN2 played an oncogenic function in NSCLC and greatly enhanced the malignant phenotype of NSCLC cells. Meanwhile, EN2 was able to boost the expression of a well-studied oncogenic Tenascin-C (TNC) gene, which in turn activated the AKT signaling pathway. Interestingly, we found that EN2 directly bound to the super-enhancer (SE) region in the TNC locus. The histone marker H3K27ac was also enriched in the region, indicating the activation of the SE. Treatment of the cells with JQ1, an inhibitor of SE activity, abrogated the effect of EN2 on the expression of TNC and phosphorylation of AKT-Ser473. Collectively, our work unveils a novel mode of EN2 function, in which EN2 governs the SE in the TNC locus, consequently activating the oncogenic TNC-AKT axis in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Homeodomain Proteins , Lung Neoplasms , Tenascin , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Homeodomain Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tenascin/genetics
17.
J Pak Med Assoc ; 74(2): 335-340, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38419236

ABSTRACT

Objective: To determine the efficacy of femoral neck system compared to dynamic hip screws in treating femoral neck fractures. METHODS: The systematic review was conducted from January to March 2023, and comprised literature search on PubMed, Embase, Scopus, Ovid, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure and Wanfang databases for relevant studies published up to March 1, 2023. Study data as well as demographic and outcome parameters related to the patients were extracted, and the methodological index for non-randomised studies was used to assess the risk of bias. Review Manager software was used to conduct metaanalysis. RESULTS: Of the 567 studies initially found, 6(1%) were included, with the publication date ranging from August 2021 to February 2023. There were 5(83.3%) studies published in English and 1(16.7%) in Chinese. Of the 577 patients with femoral neck fractures, 287(49.7%) were treated with femoral neck system and 290(50.3%) with dynamic hip screws. Significant differences were shown between the two groups regarding operation duration, blood loss, internal fixation failure rate and Harris hip score (p=<0.05). There was no significant differences between the groups regarding time from injury to surgery, hospitalisation, complication rate and femoral neck shortening rate (p>0.05). Conclusion: The novel femoral neck system could optimise surgical procedures, with shorter operation times and lesser blood loss. The femoral neck system and dynamic hip screws were comparable in terms of complication rates and postoperative hip function.


Subject(s)
Femoral Neck Fractures , Femur Neck , Adult , Humans , Femoral Neck Fractures/surgery , Bone Screws , Fracture Fixation, Internal/methods , Hospitalization , Treatment Outcome , Retrospective Studies
18.
Fa Yi Xue Za Zhi ; 40(2): 154-163, 2024 Apr 25.
Article in English, Zh | MEDLINE | ID: mdl-38847030

ABSTRACT

OBJECTIVES: To develop a deep learning model for automated age estimation based on 3D CT reconstructed images of Han population in western China, and evaluate its feasibility and reliability. METHODS: The retrospective pelvic CT imaging data of 1 200 samples (600 males and 600 females) aged 20.0 to 80.0 years in western China were collected and reconstructed into 3D virtual bone models. The images of the ischial tuberosity feature region were extracted to create sex-specific and left/right site-specific sample libraries. Using the ResNet34 model, 500 samples of different sexes were randomly selected as training and verification set, the remaining samples were used as testing set. Initialization and transfer learning were used to train images that distinguish sex and left/right site. Mean absolute error (MAE) and root mean square error (RMSE) were used as primary indicators to evaluate the model. RESULTS: Prediction results varied between sexes, with bilateral models outperformed left/right unilateral ones, and transfer learning models showed superior performance over initial models. In the prediction results of bilateral transfer learning models, the male MAE was 7.74 years and RMSE was 9.73 years, the female MAE was 6.27 years and RMSE was 7.82 years, and the mixed sexes MAE was 6.64 years and RMSE was 8.43 years. CONCLUSIONS: The skeletal age estimation model, utilizing ischial tuberosity images of Han population in western China and employing the ResNet34 combined with transfer learning, can effectively estimate adult ischium age.


Subject(s)
Age Determination by Skeleton , Deep Learning , Imaging, Three-Dimensional , Ischium , Tomography, X-Ray Computed , Humans , Male , Female , Ischium/diagnostic imaging , Adult , Middle Aged , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional/methods , China , Retrospective Studies , Age Determination by Skeleton/methods , Aged , Young Adult , Aged, 80 and over , Reproducibility of Results
19.
Angew Chem Int Ed Engl ; 63(13): e202318632, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38327029

ABSTRACT

Liposomes serve as promising and versatile vehicles for drug delivery. Tracking these nanosized vesicles, particularly in vivo, is crucial for understanding their pharmacokinetics. This study introduces the design and synthesis of three new conjugated electrolyte (CE) molecules, which emit in the second near-infrared window (NIR-II), facilitating deeper tissue penetration. Additionally, these CEs, acting as biomimetics of lipid bilayers, demonstrate superior compatibility with lipid membranes compared to commonly used carbocyanine dyes like DiR. To counteract the aggregation-caused quenching effect, CEs employ a twisted backbone, as such their fluorescence intensities can effectively enhance after a fluorophore multimerization strategy. Notably, a "passive" method was employed to integrate CEs into liposomes during the liposome formation, and membrane incorporation efficiency was significantly promoted to nearly 100%. To validate the in vivo tracking capability, the CE-containing liposomes were functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides, serving as tumor-targeting ligands. Clear fluorescent images visualizing tumor site in living mice were captured by collecting the NIR-II emission. Uniquely, these CEs exhibit additional emission peak in visible region, enabling in vitro subcellular analysis using routine confocal microscopy. These results underscore the potential of CEs as a new-generation of membrane-targeting probes to facilitate the liposome-based medicine research.


Subject(s)
Liposomes , Neoplasms , Mice , Animals , Liposomes/chemistry , Lipid Bilayers/chemistry , Biomimetics , Drug Delivery Systems , Fluorescent Dyes/chemistry
20.
Angew Chem Int Ed Engl ; 63(25): e202402375, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38619528

ABSTRACT

Open-shell conjugated polymers with a high intrinsic conductivity and high-spin ground state hold considerable promise for applications in organic electronics and spintronics. Herein, two novel acceptor-acceptor (A-A) conjugated polymers based on a highly electron-deficient quinoidal benzodifurandione unit have been developed, namely DPP-BFDO-Th and DPP-BFDO. The incorporation of the quinoidal moiety into the polymers backbones enables deeply aligned lower-lying lowest unoccupied molecular orbital (LUMO) levels of below -4.0 eV. Notably, DPP-BFDO exhibits an exceptionally low LUMO (-4.63 eV) and a high-spin ground state characterized by strong diradical characters. Moreover, a self-doping through intermolecular charge-transfer is observed for DPP-BFDO, as evidenced by X-ray photoelectron spectroscopy (XPS) studies. The high carrier concentration in combination with a planar and linear conjugated backbone yields a remarkable electrical conductivity (σ) of 1.04 S cm-1 in the "undoped" native form, ranking among the highest values reported for n-type radical-based conjugated polymers. When employed as an n-type thermoelectric material, DPP-BFDO achieves a power factor of 12.59 µW m-1 K-2. Furthermore, upon n-doping, the σ could be improved to 65.68 S cm-1. This study underscores the great potential of electron-deficient quinoidal units in constructing dopant-free n-type conductive polymers with a high-spin ground state and exceptional intrinsic conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL