Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35120603

ABSTRACT

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Subject(s)
Immune Evasion/physiology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Humans , Mutagenesis, Site-Directed , Neutralization Tests , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance , Virus Attachment
2.
Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35460644

ABSTRACT

As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Mice , RNA, Circular/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic/genetics , mRNA Vaccines
3.
Cell ; 182(1): 73-84.e16, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32425270

ABSTRACT

The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here, we report the rapid identification of SARS-CoV-2-neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified, with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8 Å cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody's epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2-neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV-neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B cell sequencing in response to pandemic infectious diseases.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , B-Lymphocytes/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Single-Cell Analysis , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , COVID-19 , Convalescence , High-Throughput Nucleotide Sequencing , Humans , Mice , Pandemics , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , VDJ Exons
4.
Cell ; 183(4): 1013-1023.e13, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32970990

ABSTRACT

Understanding how potent neutralizing antibodies (NAbs) inhibit SARS-CoV-2 is critical for effective therapeutic development. We previously described BD-368-2, a SARS-CoV-2 NAb with high potency; however, its neutralization mechanism is largely unknown. Here, we report the 3.5-Å cryo-EM structure of BD-368-2/trimeric-spike complex, revealing that BD-368-2 fully blocks ACE2 recognition by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" or "down" conformations. Also, BD-368-2 treats infected adult hamsters at low dosages and at various administering windows, in contrast to placebo hamsters that manifested severe interstitial pneumonia. Moreover, BD-368-2's epitope completely avoids the common binding site of VH3-53/VH3-66 recurrent NAbs, evidenced by tripartite co-crystal structures with RBDs. Pairing BD-368-2 with a potent recurrent NAb neutralizes SARS-CoV-2 pseudovirus at pM level and rescues mutation-induced neutralization escapes. Together, our results rationalized a new RBD epitope that leads to high neutralization potency and demonstrated BD-368-2's therapeutic potential in treating COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cricetinae , Cryoelectron Microscopy , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Female , Lung/pathology , Male , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
5.
Nat Immunol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227515
6.
Nature ; 625(7993): 148-156, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37993710

ABSTRACT

The continuing emergence of SARS-CoV-2 variants highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by vaccination based on the ancestral (hereafter referred to as WT) strain would compromise the antibody response to Omicron-based boosters1-5. Vaccination strategies to counter immune imprinting are critically needed. Here we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. In mice, the efficacy of single Omicron boosting is heavily limited when using variants that are antigenically distinct from WT-such as the XBB variant-and this concerning situation could be mitigated by a second Omicron booster. Similarly, in humans, repeated Omicron infections could alleviate WT vaccination-induced immune imprinting and generate broad neutralization responses in both plasma and nasal mucosa. Notably, deep mutational scanning-based epitope characterization of 781 receptor-binding domain (RBD)-targeting monoclonal antibodies isolated from repeated Omicron infection revealed that double Omicron exposure could induce a large proportion of matured Omicron-specific antibodies that have distinct RBD epitopes to WT-induced antibodies. Consequently, immune imprinting was largely mitigated, and the bias towards non-neutralizing epitopes observed in single Omicron exposures was restored. On the basis of the deep mutational scanning profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated that these mutations could further boost the immune-evasion capability of XBB.1.5 while maintaining high ACE2-binding affinity. Our findings suggest that the WT component should be abandoned when updating COVID-19 vaccines, and individuals without prior Omicron exposure should receive two updated vaccine boosters.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunologic Memory , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Immunologic Memory/immunology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Mutation
7.
Nature ; 614(7948): 521-529, 2023 02.
Article in English | MEDLINE | ID: mdl-36535326

ABSTRACT

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Evolution, Molecular , Immunity, Humoral , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Breakthrough Infections/immunology , Breakthrough Infections/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Serotherapy , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Protein Domains/genetics , Protein Domains/immunology , Antigenic Drift and Shift/immunology , Mutation
8.
Nature ; 602(7898): 657-663, 2022 02.
Article in English | MEDLINE | ID: mdl-35016194

ABSTRACT

The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A-F)-a grouping that is highly concordant with knowledge-based structural classifications3-5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A-D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/classification , Antibodies, Viral/classification , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cells, Cultured , Convalescence , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Humans , Immune Sera/immunology , Models, Molecular , Mutation , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
9.
Nature ; 608(7923): 593-602, 2022 08.
Article in English | MEDLINE | ID: mdl-35714668

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Epitopes, B-Lymphocyte , Immune Tolerance , Mutation , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
10.
Mol Cell ; 80(6): 1123-1134.e4, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33290743

ABSTRACT

Analyzing the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from clinical samples is crucial for understanding viral spread and evolution as well as for vaccine development. Existing RNA sequencing methods are demanding on user technique and time and, thus, not ideal for time-sensitive clinical samples; these methods are also not optimized for high performance on viral genomes. We developed a facile, practical, and robust approach for metagenomic and deep viral sequencing from clinical samples. We demonstrate the utility of our approach on pharyngeal, sputum, and stool samples collected from coronavirus disease 2019 (COVID-19) patients, successfully obtaining whole metatranscriptomes and complete high-depth, high-coverage SARS-CoV-2 genomes with high yield and robustness. With a shortened hands-on time from sample to virus-enriched sequencing-ready library, this rapid, versatile, and clinic-friendly approach will facilitate molecular epidemiology studies during current and future outbreaks.


Subject(s)
COVID-19/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing , RNA, Viral/genetics , SARS-CoV-2/genetics , Whole Genome Sequencing , Animals , Humans , Mice , NIH 3T3 Cells , RNA, Viral/metabolism , SARS-CoV-2/metabolism
11.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38194459

ABSTRACT

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin A, Secretory , Animals , Mice , Humans , Immunoglobulin G , Immunoglobulin A , Administration, Intranasal , Mice, Transgenic
12.
Proc Natl Acad Sci U S A ; 120(49): e2310367120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011566

ABSTRACT

Existing single-cell bisulfite-based DNA methylation analysis is limited by low DNA recovery, and the measurement of 5hmC at single-base resolution remains challenging. Here, we present a bisulfite-free single-cell whole-genome 5mC and 5hmC profiling technique, named Cabernet, which can characterize 5mC and 5hmC at single-base resolution with high genomic coverage. Cabernet utilizes Tn5 transposome for DNA fragmentation, which enables the discrimination between different alleles for measuring hemi-methylation status. Using Cabernet, we revealed the 5mC, hemi-5mC and 5hmC dynamics during early mouse embryo development, uncovering genomic regions exclusively governed by active or passive demethylation. We show that hemi-methylation status can be used to distinguish between pre- and post-replication cells, enabling more efficient cell grouping when integrated with 5mC profiles. The property of Tn5 naturally enables Cabernet to achieve high-throughput single-cell methylome profiling, where we probed mouse cortical neurons and embryonic day 7.5 (E7.5) embryos, and constructed the library for thousands of single cells at high efficiency, demonstrating its potential for analyzing complex tissues at substantially low cost. Together, we present a way of high-throughput methylome and hydroxymethylome detection at single-cell resolution, enabling efficient analysis of the epigenetic status of biological systems with complicated nature such as neurons and cancer cells.


Subject(s)
5-Methylcytosine , DNA Methylation , Animals , Mice , Sulfites , Sequence Analysis, DNA/methods , Cytosine
13.
PLoS Pathog ; 19(12): e1011868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38117863

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) XBB lineages have achieved dominance worldwide and keep on evolving. Convergent evolution of XBB lineages on the receptor-binding domain (RBD) L455F and F456L is observed, resulting in variants with substantial growth advantages, such as EG.5, FL.1.5.1, XBB.1.5.70, and HK.3. Here, we show that neutralizing antibody (NAb) evasion drives the convergent evolution of F456L, while the epistatic shift caused by F456L enables the subsequent convergence of L455F through ACE2 binding enhancement and further immune evasion. L455F and F456L evade RBD-targeting Class 1 public NAbs, reducing the neutralization efficacy of XBB breakthrough infection (BTI) and reinfection convalescent plasma. Importantly, L455F single substitution significantly dampens receptor binding; however, the combination of L455F and F456L forms an adjacent residue flipping, which leads to enhanced NAbs resistance and ACE2 binding affinity. The perturbed receptor-binding mode leads to the exceptional ACE2 binding and NAb evasion, as revealed by structural analyses. Our results indicate the evolution flexibility contributed by epistasis cannot be underestimated, and the evolution potential of SARS-CoV-2 RBD remains high.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19 Serotherapy , Antibodies, Neutralizing
14.
Genet Epidemiol ; 47(4): 332-357, 2023 06.
Article in English | MEDLINE | ID: mdl-36808763

ABSTRACT

Mendelian randomization is a statistical method for inferring the causal relationship between exposures and outcomes using an economics-derived instrumental variable approach. The research results are relatively complete when both exposures and outcomes are continuous variables. However, due to the noncollapsing nature of the logistic model, the existing methods inherited from the linear model for exploring binary outcome cannot take the effect of confounding factors into account, which leads to biased estimate of the causal effect. In this article, we propose an integrated likelihood method MR-BOIL to investigate causal relationships for binary outcomes by treating confounders as latent variables in one-sample Mendelian randomization. Under the assumption of a joint normal distribution of the confounders, we use expectation maximization algorithm to estimate the causal effect. Extensive simulations demonstrate that the estimator of MR-BOIL is asymptotically unbiased and that our method improves statistical power without inflating type I error rate. We then apply this method to analyze the data from Atherosclerosis Risk in Communications Study. The results show that MR-BOIL can better identify plausible causal relationships with high reliability, compared with the unreliable results of existing methods. MR-BOIL is implemented in R and the corresponding R code is provided for free download.


Subject(s)
Mendelian Randomization Analysis , Models, Genetic , Humans , Likelihood Functions , Mendelian Randomization Analysis/methods , Reproducibility of Results , Causality
15.
Clin Infect Dis ; 74(8): 1485-1488, 2022 04 28.
Article in English | MEDLINE | ID: mdl-34498683

ABSTRACT

A false-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction result can lead to unnecessary public health measures. We report 2 individuals whose respiratory specimens were contaminated by an inactivated SARS-CoV-2 vaccine strain (CoronaVac), likely at vaccination premises. Incidentally, whole genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Vaccination
16.
Natl Sci Rev ; 11(7): nwae196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39071101

ABSTRACT

Immune evasion is a pivotal force shaping the evolution of viruses. Nonetheless, the extent to which virus evolution varies among populations with diverse immune backgrounds remains an unsolved mystery. Prior to the widespread SARS-CoV-2 infections in December 2022 and January 2023, the Chinese population possessed a markedly distinct (less potent) immune background due to its low infection rate, compared to countries experiencing multiple infection waves, presenting an unprecedented opportunity to investigate how the virus has evolved under different immune contexts. We compared the mutation spectrum and functional potential of the newly derived mutations that occurred in BA.5.2.48, BF.7.14 and BA.5.2.49-variants prevalent in China-with their counterparts in other countries. We found that the emerging mutations in the receptor-binding-domain region in these lineages were more widely dispersed and evenly distributed across different epitopes. These mutations led to a higher angiotensin-converting enzyme 2 (ACE2) binding affinity and reduced potential for immune evasion compared to their counterparts in other countries. These findings suggest a milder immune pressure and less evident immune imprinting within the Chinese population. Despite the emergence of numerous immune-evading variants in China, none of them outcompeted the original strain until the arrival of the XBB variant, which had stronger immune evasion and subsequently outcompeted all circulating variants. Our findings demonstrated that the continuously changing immune background led to varying evolutionary pressures on SARS-CoV-2. Thus, in addition to viral genome surveillance, immune background surveillance is also imperative for predicting forthcoming mutations and understanding how these variants spread in the population.

17.
Chin Med J (Engl) ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39028115

ABSTRACT

BACKGROUND: T-cell-mediated immunity is crucial for the effective clearance of viral infection, but the T-cell-mediated immune responses that are induced by booster doses of inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in people living with human immunodeficiency virus (PLWH) remain unclear. METHODS: Forty-five PLWH who had received antiretroviral therapy (ART) for more than two years and 29 healthy controls (HCs) at Beijing Youan Hospital were enrolled to assess the dynamic changes in T-cell responses between the day before the third vaccine dose (week 0) and 4 or 12 weeks (week 4 or week 12) after receiving the third dose of inactivated SARS-CoV-2 vaccine. Flow cytometry, enzyme-linked immunospot (ELISpot), and multiplex cytokines profiling were used to assess T-cell responses at the three timepoints in this study. RESULTS: The results of the ELISpot and activation-induced marker (AIM) assays showed that SARS-CoV-2-specific T-cell responses were increased in both PLWH and HCs after the third dose of the inactivated SARS-CoV-2 vaccine, and a similar magnitude of immune response was induced against the Omicron (B.1.1.529) variant compared to the wild-type strain. In detail, spike-specific T-cell responses (measured by the ELISpot assay for interferon γ [IFN-γ] release) in both PLWH and HCs significantly increased in week 4, and the spike-specific T-cell responses in HCs were significantly stronger than those in PLWH 4 weeks after the third vaccination. In the AIM assay, spike-specific CD4+ T-cell responses peaked in both PLWH and HCs in week 12. Additionally, significantly higher spike-specific CD8+ T-cell responses were induced in PLWH than in HCs in week 12. In PLWH, the release of the cytokines interleukin-2 (IL-2), tumour necrosis factor-alpha (TNF-α), and IL-22 by peripheral blood mononuclear cells (PBMCs) that were stimulated with spike peptides increased in week 12. In addition, the levels of IL-4 and IL-5 were higher in PLWH than in HCs in week 12. Interestingly, the magnitude of SARS-CoV-2-specific T-cell responses in PLWH was negatively associated with the extent of CD8+ T-cell activation and exhaustion. In addition, positive correlations were observed between the magnitude of spike-specific T-cell responses (determined by measuring IFN-γ release by ELISpot) and the amounts of IL-4, IL-5, IL-2 and IL-17F. CONCLUSIONS: Our findings suggested that SARS-CoV-2-specific T-cell responses could be enhanced by the booster dose of inactivated COVID-19 vaccines and further illustrate the importance of additional vaccination for PLWH.

18.
Natl Sci Rev ; 11(7): nwae206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39071099

ABSTRACT

Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity is recovered in the presence of heparin sulfate, which targets the 'N354 pocket' to ease restrictions of conformational transition resulting in a 'RBD-up' state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms.

19.
Emerg Microbes Infect ; 13(1): 2343909, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38616729

ABSTRACT

The recent emergence of a SARS-CoV-2 saltation variant, BA.2.87.1, which features 65 spike mutations relative to BA.2, has attracted worldwide attention. In this study, we elucidate the antigenic characteristics and immune evasion capability of BA.2.87.1. Our findings reveal that BA.2.87.1 is more susceptible to XBB-induced humoral immunity compared to JN.1. Notably, BA.2.87.1 lacks critical escaping mutations in the receptor binding domain (RBD) thus allowing various classes of neutralizing antibodies (NAbs) that were escaped by XBB or BA.2.86 subvariants to neutralize BA.2.87.1, although the deletions in the N-terminal domain (NTD), specifically 15-23del and 136-146del, compensate for the resistance to humoral immunity. Interestingly, several neutralizing antibody drugs have been found to restore their efficacy against BA.2.87.1, including SA58, REGN-10933 and COV2-2196. Hence, our results suggest that BA.2.87.1 may not become widespread until it acquires multiple RBD mutations to achieve sufficient immune evasion comparable to that of JN.1.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Humans , Mutation , Animals , Antigens, Viral/immunology , Antigens, Viral/genetics , Immunity, Humoral
20.
Opt Express ; 21(23): 28583-96, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514370

ABSTRACT

In super-resolution imaging techniques based on single-molecule switching and localization, the time to acquire a super-resolution image is limited by the maximum density of fluorescent emitters that can be accurately localized per imaging frame. In order to increase the imaging rate, several methods have been recently developed to analyze images with higher emitter densities. One powerful approach uses methods based on compressed sensing to increase the analyzable emitter density per imaging frame by several-fold compared to other reported approaches. However, the computational cost of this approach, which uses interior point methods, is high, and analysis of a typical 40 µm x 40 µm field-of-view super-resolution movie requires thousands of hours on a high-end desktop personal computer. Here, we demonstrate an alternative compressed-sensing algorithm, L1-Homotopy (L1H), which can generate super-resolution image reconstructions that are essentially identical to those derived using interior point methods in one to two orders of magnitude less time depending on the emitter density. Moreover, for an experimental data set with varying emitter density, L1H analysis is ~300-fold faster than interior point methods. This drastic reduction in computational time should allow the compressed sensing approach to be routinely applied to super-resolution image analysis.


Subject(s)
Algorithms , Diagnostic Imaging/methods , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence , Humans
SELECTION OF CITATIONS
SEARCH DETAIL