Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261659

ABSTRACT

Congenital human cytomegalovirus (HCMV) infection and HCMV infection of immunosuppressed patients cause significant morbidity and mortality, and vaccine development against HCMV is a major public health priority. HCMV envelope glycoproteins gB, gH, and gL, which constitute the core fusion machinery, play critical roles in HCMV fusion and entry into host cells. HCMV gB and gH/gL have been reported to elicit potent neutralizing antibodies. Recently, the gB/gH/gL complex was identified in the envelope of HCMV virions, and 16-50% of the total gH/gL bound to gB, forming the gB/gH/gL complex. These findings make the gB/gH/gL a unique HCMV vaccine candidate. We previously reported the production of HCMV trimeric gB and gH/gL heterodimers, and immunization with a combination of trimeric gB and gH/gL heterodimers elicited strong synergistic HCMV-neutralizing activity. To further improve the immunogenicity of gH/gL, we produced trimeric gH/gL. Rabbits immunized with HCMV trimeric gH/gL induced up to 38-fold higher serum titers of gH/gL-specific IgG relative to HCMV monomeric gH/gL, and elicited ~10-fold higher titers of complement-dependent and complement-independent HCMV-neutralizing activity for both epithelial cells and fibroblasts. HCMV trimeric gH/gL in combination with HCMV trimeric gB would be a novel promising HCMV vaccine candidate that could induce highly potent neutralizing activities.


Subject(s)
Antibodies, Neutralizing/immunology , Cytomegalovirus Vaccines/immunology , Viral Envelope Proteins/immunology , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Rabbits , Vaccines, Synthetic/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
2.
Vaccines (Basel) ; 9(3)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808755

ABSTRACT

Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. EBV core fusion machinery envelope proteins gH/gL and gB coordinately mediate EBV fusion and entry into its target cells, B lymphocytes and epithelial cells, suggesting these proteins could induce antibodies that prevent EBV infection. We previously reported that the immunization of rabbits with recombinant EBV gH/gL or trimeric gB each induced markedly higher serum EBV-neutralizing titers for B lymphocytes than that of the leading EBV vaccine candidate gp350. In this study, we demonstrated that immunization of rabbits with EBV core fusion machinery proteins induced high titer EBV neutralizing antibodies for both B lymphocytes and epithelial cells, and EBV gH/gL in combination with EBV trimeric gB elicited strong synergistic EBV neutralizing activities. Furthermore, the immune sera from rabbits immunized with EBV gH/gL or trimeric gB demonstrated strong passive immune protection of humanized mice from lethal dose EBV challenge, partially or completely prevented death respectively, and markedly decreased the EBV load in peripheral blood of humanized mice. These data strongly suggest the combination of EBV core fusion machinery envelope proteins gH/gL and trimeric gB is a promising EBV prophylactic vaccine.

3.
Vaccines (Basel) ; 8(2)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32294946

ABSTRACT

Human cytomegalovirus (HCMV) core fusion machinery proteins gB and gH/gL, and accessory proteins UL128/UL130/UL131A, are the key envelope proteins that mediate HCMV entry into and infection of host cells. To determine whether these HCMV envelope proteins could elicit neutralizing activities synergistically, we immunized rabbits with individual or various combinations of these proteins adsorbed to aluminum hydroxide mixed with CpG-ODN. We then analyzed serum neutralizing activities with multiple HCMV laboratory strains and clinical isolates. HCMV trimeric gB and gH/gL elicited high and moderate titers of HCMV neutralizing activity, respectively. HCMV gB in combination with gH/gL elicited up to 17-fold higher HCMV neutralizing activities compared to the sum of neutralizing activity elicited by the individual proteins analyzed with both fibroblasts and epithelial cells. HCMV gB+gH/gL+UL128/UL130/UL131A in combination increased the neutralizing activity up to 32-fold compared to the sum of neutralizing activities elicited by the individual proteins analyzed with epithelial cells. Adding UL128/UL130/UL131A to gB and gH/gL combination did not increase further the HCMV neutralizing activity analyzed with fibroblasts. These data suggest that the combination of HCMV core fusion machinery envelope proteins gB+gH/gL or the combination of gB and pentameric complex could be ideal vaccine candidates that would induce optimal immune responses against HCMV infection.

4.
Vaccine ; 36(37): 5580-5590, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30082162

ABSTRACT

Human cytomegalovirus (HCMV) is a major cause of disability in congenitally infected infants and in the immunosuppressed. There is currently no licensed prophylactic HCMV vaccine. The HCMV envelope glycoprotein B (gB) is considered a major vaccine target antigen based on its critical role in mediating viral-host cell fusion and thus viral entry. The natural conformation of HCMV gB within the viral envelope is a trimer, but there has been no reported success in producing a recombinant trimeric gB suitable for vaccine use. Phase II clinical trials of a monomeric recombinant gB protein demonstrated 50% efficacy in preventing HCMV infection in seronegative women of reproductive age, and in reducing viremia in solid organ transplantation recipients. We now report the production of a uniformly trimeric recombinant HCMV gB protein in Chinese ovary cells, as demonstrated by Western blot analysis under modified non-reducing conditions and size exclusion chromatography with multi-angle scattering. Immunization of mice with trimeric HCMV gB induced up to 11-fold higher serum titers of total gB-specific IgG relative to monomeric HCMV gB using Alum + CpG as adjuvants. Further, trimeric HCMV gB elicited 50-fold higher complement-independent and 20-fold higher complement-dependent HCMV neutralizing titers compared to monomeric HCMV gB using the fibroblast cell line, MRC-5, and up to 6-fold higher complement-independent and -dependent HCMV neutralizing titers using the epithelial cell line, ARPE-19. The markedly enhanced HCMV neutralizing activity in response to trimeric HCMV gB was also observed using an additional four distinct clinical HCMV isolates. These data support a role for trimeric HCMV gB as an important component for clinical testing of a prophylactic HCMV vaccine.


Subject(s)
Antibodies, Neutralizing/blood , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Vaccines/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Viral/blood , CHO Cells , Cricetulus , Cytomegalovirus , Female , Mice , Mice, Inbred BALB C , Neutralization Tests , Protein Multimerization , Recombinant Proteins/immunology , Viremia , Virus Internalization
5.
Vaccine ; 34(34): 4050-5, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27291087

ABSTRACT

Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and has been strongly implicated in the etiology of multiple epithelial and lymphoid cancers, such as nasopharyngeal carcinoma, gastric carcinoma, Hodgkin lymphoma, Burkitt lymphoma, non-Hodgkin lymphoma and post-transplant lymphoproliferative disorder. There is currently no licensed prophylactic vaccine for EBV. Most efforts to develop prophylactic vaccines have focused on EBV gp350, which binds to CD21/CD35 to gain entry into B cells, and is a major target of serum neutralizing antibody in EBV seropositive humans. However, a recombinant monomeric gp350 protein failed to prevent EBV infection in a phase II clinical trial. Thus, alternative or additional target antigens may be necessary for a successful prophylactic vaccine. EBV gH/gL and gB proteins coordinately mediate EBV fusion and entry into B cells and epithelial cells, strongly suggesting that vaccination with these proteins might elicit antibodies that will prevent EBV infection. We produced recombinant trimeric and monomeric EBV gH/gL heterodimeric proteins and a trimeric EBV gB protein, in addition to tetrameric and monomeric gp350(1-470) proteins, in Chinese hamster ovary cells. We demonstrated that vaccination of rabbits with trimeric and monomeric gH/gL, trimeric gB, and tetrameric gp350(1-470) induced serum EBV-neutralizing titers, using cultured human B cells, that were >100-fold, 20-fold, 18-fold, and 4-fold higher, respectively, than monomeric gp350(1-470). These data strongly suggest a role for testing EBV gH/gL and EBV gB in a future prophylactic vaccine to prevent EBV infection of B cells, as well as epithelial cells.


Subject(s)
Antibodies, Viral/blood , Epstein-Barr Virus Infections/prevention & control , Membrane Glycoproteins/immunology , Molecular Chaperones/immunology , Viral Proteins/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , B-Lymphocytes/immunology , B-Lymphocytes/virology , CHO Cells , Cells, Cultured , Cricetulus , Humans , Male , Neutralization Tests , Rabbits , Recombinant Proteins
6.
Vaccine ; 31(30): 3039-45, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23665339

ABSTRACT

Infectious mononucleosis and B-cell transformation in response to infection with Epstein-Barr virus (EBV) is dependent upon binding of the EBV envelope glycoprotein gp350 to CD21 on B-cells. Gp350-specific antibody comprises most of the EBV neutralizing activity in the serum of infected patients, making this protein a promising target antigen for a prophylactic EBV vaccine. We describe a novel, tetrameric gp350-based vaccine that exhibits markedly enhanced immunogenicity relative to its monomeric counterpart. Plasmid DNA was constructed for synthesis, within transfected CHO cells, of a tetrameric, truncated (a.a. 1-470) gp350 protein (gp350(1-470)). Tetrameric gp350(1-470) induced ≈ 20-fold higher serum titers of gp350(1-470)-specific IgG and >19-fold enhancements in neutralizing titers at the highest dose, and was >25-fold more immunogenic on a per-weight basis than monomeric gp350(1-470). Further, epidermal immunization with plasmid DNA encoding gp350(1-470) tetramer induced 8-fold higher serum titers of gp350(1-470)-specific IgG relative to monomer. Tetrameric gp350(1-470) binding to human CD21 was >24-fold more efficient on a per-weight basis than monomer, but neither tetramer nor monomer mediated polyclonal human B-cell activation. Finally, the introduction of strong, universal tetanus toxoid (TT)-specific CD4+ T-cell epitopes into the tetrameric gp350(1-470) had no effect on the gp350(1-470)-specific IgG response in naïve mice, and resulted in suppressed gp350(1-470)-specific IgG responses in TT-primed mice. Collectively, these data suggest that tetrameric gp350(1-470) is a potentially promising candidate for testing as a prophylactic EBV vaccine, and that protein multimerization, using the approach described herein, is likely to be clinically relevant for enhancing the immunogenicity of other proteins of vaccine interest.


Subject(s)
Epstein-Barr Virus Infections/prevention & control , Herpes Zoster Vaccine/immunology , Herpesvirus 4, Human/immunology , Viral Matrix Proteins/immunology , Animals , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CHO Cells , Cricetinae , Cricetulus , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Immunization , Mice , Plasmids , Transfection , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism
7.
Blood ; 101(2): 498-507, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12393416

ABSTRACT

We have investigated the role of Smad family proteins, known to be important cytoplasmic mediators of signals from the transforming growth factor-beta (TGF-beta) receptor serine/threonine kinases, in TGF-beta-dependent differentiation of hematopoietic cells, using as a model the human promyelocytic leukemia cell line, HL-60. TGF-beta-dependent differentiation of these cells to monocytes, but not retinoic acid-dependent differentiation to granulocytes, was accompanied by rapid phosphorylation and nuclear translocation of Smad2 and Smad3. Vitamin D(3) also induced phosphorylation of Smad2/3 and monocytic differentiation; however the effects were indirect, dependent on its ability to induce expression of TGF-beta1. Simultaneous treatment of these cells with TGF-beta1 and all-trans-retinoic acid (ATRA), which leads to almost equal numbers of granulocytes and monocytes, significantly reduced the level of phospho-Smad2/3 and its nuclear accumulation, compared with that in cells treated with TGF-beta1 alone. TGF-beta1 and ATRA activate P42/44 mitogen-activated protein (MAP) kinase with nearly identical kinetics, ruling out its involvement in these effects on Smad phosphorylation. Addition of the inhibitor-of-protein serine/threonine phosphatases, okadaic acid, blocks the ATRA-mediated reduction in TGF-beta-induced phospho-Smad2 and shifts the differentiation toward monocytic end points. In HL-60R mutant cells, which harbor a defective retinoic acid receptor-alpha (RAR-alpha), ATRA is unable to reduce levels of TGF-beta-induced phospho-Smad2/3, coincident with its inability to differentiate these cells along granulocytic pathways. Together, these data suggest a new level of cross-talk between ATRA and TGF-beta, whereby a putative RAR-alpha-dependent phosphatase activity limits the levels of phospho-Smad2/3 induced by TGF-beta, ultimately reducing the levels of nuclear Smad complexes mediating the TGF-beta-dependent differentiation of the cells to monocytic end points.


Subject(s)
DNA-Binding Proteins/physiology , Granulocytes/cytology , Monocytes/cytology , Trans-Activators/physiology , Transforming Growth Factor beta/pharmacology , Tretinoin/pharmacology , Cell Differentiation/drug effects , Cholecalciferol/pharmacology , DNA-Binding Proteins/metabolism , Drug Interactions , Granulocytes/drug effects , HL-60 Cells , Humans , Mitogen-Activated Protein Kinases/metabolism , Monocytes/drug effects , Phosphorylation/drug effects , Signal Transduction , Smad2 Protein , Smad3 Protein , Trans-Activators/metabolism , Transforming Growth Factor beta1
SELECTION OF CITATIONS
SEARCH DETAIL