Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Biochemistry ; 63(5): 660-670, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38385972

ABSTRACT

Bacterial cells tightly regulate the intracellular concentrations of essential transition metal ions by deploying a panel of metal-regulated transcriptional repressors and activators that bind to operator-promoter regions upstream of regulated genes. Like other zinc uptake regulator (Zur) proteins, Acinetobacter baumannii Zur represses transcription of its regulon when ZnII is replete and binds more weakly to DNA when ZnII is limiting. Previous studies established that Zur proteins are homodimeric and harbor at least two metal sites per protomer or four per dimer. CdII X-ray absorption spectroscopy (XAS) of the Cd2Zn2 AbZur metalloderivative with CdII bound to the allosteric sites reveals a S(N/O)3 first coordination shell. Site-directed mutagenesis suggests that H89 and C100 from the N-terminal DNA binding domain and H107 and E122 from the C-terminal dimerization domain comprise the regulatory metal site. KZn for this allosteric site is 6.0 (±2.2) × 1012 M-1 with a functional "division of labor" among the four metal ligands. N-terminal domain ligands H89 and C100 contribute far more to KZn than H107 and E122, while C100S AbZur uniquely fails to bind to DNA tightly as measured by an in vitro transcription assay. The heterotropic allosteric coupling free energy, ΔGc, is negative, consistent with a higher KZn for the AbZur-DNA complex and defining a bioavailable ZnII set-point of ≈6 × 10-14 M. Small-angle X-ray scattering (SAXS) experiments reveal that only the wild-type Zn homodimer undergoes allosteric switching, while the C100S AbZur fails to switch. These data collectively suggest that switching to a high affinity DNA-binding conformation involves a rotation/translation of one protomer relative to the other in a way that is dependent on the integrity of C100. We place these findings in the context of other Zur proteins and Fur family repressors more broadly.


Subject(s)
Acinetobacter baumannii , Isoquinolines , Sulfonamides , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Bacterial Proteins/chemistry , Binding Sites , Cadmium , Protein Subunits , Scattering, Small Angle , Zinc/metabolism , X-Ray Diffraction , Repressor Proteins/metabolism , Metals , DNA/metabolism
2.
J Biol Chem ; 299(9): 105147, 2023 09.
Article in English | MEDLINE | ID: mdl-37567478

ABSTRACT

The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.


Subject(s)
Bacterial Proteins , Disulfides , Exotoxins , Gene Expression Regulation, Bacterial , Hemolysin Proteins , Intracellular Space , Sulfhydryl Compounds , Transcriptional Activation , Vibrio cholerae , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Exotoxins/genetics , Exotoxins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Transcriptional Activation/drug effects , Vibrio cholerae/drug effects , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Disulfides/metabolism , Disulfides/pharmacology , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology , Intracellular Space/metabolism , Mass Spectrometry , Metabolomics , Glutathione Disulfide/pharmacology , Gastrointestinal Microbiome/immunology
3.
Nat Chem Biol ; 17(1): 65-70, 2021 01.
Article in English | MEDLINE | ID: mdl-33106663

ABSTRACT

Cysteine thiol-based transcriptional regulators orchestrate the coordinated regulation of redox homeostasis and other cellular processes by 'sensing' or detecting a specific redox-active molecule, which in turn activates the transcription of a specific detoxification pathway. The extent to which these sensors are truly specific in cells for a singular class of reactive small-molecule stressors, for example, reactive oxygen or sulfur species, is largely unknown. Here, we report structural and mechanistic insights into the thiol-based transcriptional repressor SqrR, which reacts exclusively with oxidized sulfur species such as persulfides, to yield a tetrasulfide bridge that inhibits DNA operator-promoter binding. Evaluation of crystallographic structures of SqrR in various derivatized states, coupled with the results of a mass spectrometry-based kinetic profiling strategy, suggest that persulfide selectivity is determined by structural frustration of the disulfide form. These findings led to the identification of an uncharacterized repressor from the bacterial pathogen Acinetobacter baumannii as a persulfide sensor.


Subject(s)
Acinetobacter baumannii/genetics , Bacterial Proteins/chemistry , Gene Expression Regulation, Bacterial , Quinone Reductases/chemistry , Sulfides/chemistry , Transcription, Genetic , Acinetobacter baumannii/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Disulfides/chemistry , Disulfides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutathione/chemistry , Glutathione/metabolism , Kinetics , Models, Molecular , Oxidation-Reduction , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quinone Reductases/genetics , Quinone Reductases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Sulfides/metabolism , Sulfur/chemistry , Sulfur/metabolism , Thermodynamics
4.
Nucleic Acids Res ; 49(21): 12556-12576, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34755876

ABSTRACT

CstR is a persulfide-sensing member of the functionally diverse copper-sensitive operon repressor (CsoR) superfamily. While CstR regulates the bacterial response to hydrogen sulfide (H2S) and more oxidized reactive sulfur species (RSS) in Gram-positive pathogens, other dithiol-containing CsoR proteins respond to host derived Cu(I) toxicity, sometimes in the same bacterial cytoplasm, but without regulatory crosstalk in cells. It is not clear what prevents this crosstalk, nor the extent to which RSS sensors exhibit specificity over other oxidants. Here, we report a sequence similarity network (SSN) analysis of the entire CsoR superfamily, which together with the first crystallographic structure of a CstR and comprehensive mass spectrometry-based kinetic profiling experiments, reveal new insights into the molecular basis of RSS specificity in CstRs. We find that the more N-terminal cysteine is the attacking Cys in CstR and is far more nucleophilic than in a CsoR. Moreover, our CstR crystal structure is markedly asymmetric and chemical reactivity experiments reveal the functional impact of this asymmetry. Substitution of the Asn wedge between the resolving and the attacking thiol with Ala significantly decreases asymmetry in the crystal structure and markedly impacts the distribution of species, despite adopting the same global structure as the parent repressor. Companion NMR, SAXS and molecular dynamics simulations reveal that the structural and functional asymmetry can be traced to fast internal dynamics of the tetramer. Furthermore, this asymmetry is preserved in all CstRs and with all oxidants tested, giving rise to markedly distinct distributions of crosslinked products. Our exploration of the sequence, structural, and kinetic features that determine oxidant-specificity suggest that the product distribution upon RSS exposure is determined by internal flexibility.


Subject(s)
Bacterial Proteins/chemistry , Copper/chemistry , Molecular Dynamics Simulation , Operon , Repressor Proteins/chemistry , Sulfides/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Copper/metabolism , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/genetics , Cysteine/metabolism , Fluorescence Polarization , Free Radicals/chemistry , Free Radicals/metabolism , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Magnetic Resonance Spectroscopy , Protein Conformation , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sulfides/metabolism , Sulfur/chemistry , Sulfur/metabolism , Toluene/analogs & derivatives , Toluene/chemistry
5.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216300

ABSTRACT

The different niches through which bacteria move during their life cycle require a fast response to the many environmental queues they encounter. The sensing of these stimuli and their correct response is driven primarily by transcriptional regulators. This kind of protein is involved in sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of biological systems and has become an important field of research during the last decades. In this review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms. We introduce a roadmap that may serve for experimental design, depending on the answers we seek and the initial information we have about the system of study. We also provide information on databases containing available structural information on each family of transcriptional regulators. Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and regulation involving many transcriptional regulators of interest, highlighting multipronged strategies and novel experimental techniques. The aim of the experiments discussed here was to provide a better understanding at a molecular level of how bacteria adapt to the different environmental threats they face.


Subject(s)
Bacterial Proteins , Transcription Factors , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Transcription Factors/metabolism
6.
Nucleic Acids Res ; 47(13): 6885-6899, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31165873

ABSTRACT

Maintaining manganese (Mn) homeostasis is important for the virulence of numerous bacteria. In the human respiratory pathogen Streptococcus pneumoniae, the Mn-specific importer PsaBCA, exporter MntE, and transcriptional regulator PsaR establish Mn homeostasis. In other bacteria, Mn homeostasis is controlled by yybP-ykoY family riboswitches. Here, we characterize a yybP-ykoY family riboswitch upstream of the mgtA gene encoding a PII-type ATPase in S. pneumoniae, suggested previously to function in Ca2+ efflux. We show that the mgtA riboswitch aptamer domain adopts a canonical yybP-ykoY structure containing a three-way junction that is compacted in the presence of Ca2+ or Mn2+ at a physiological Mg2+ concentration. Although Ca2+ binds to the RNA aptamer with higher affinity than Mn2+, in vitro activation of transcription read-through of mgtA by Mn2+ is much greater than by Ca2+. Consistent with this result, mgtA mRNA and protein levels increase ≈5-fold during cellular Mn stress, but only in genetic backgrounds of S. pneumoniae and Bacillus subtilis that exhibit Mn2+ sensitivity, revealing that this riboswitch functions as a failsafe 'on' signal to prevent Mn2+ toxicity in the presence of high cellular Mn2+. In addition, our results suggest that the S. pneumoniae yybP-ykoY riboswitch functions to regulate Ca2+ efflux under these conditions.


Subject(s)
Adenosine Triphosphatases/biosynthesis , Bacterial Proteins/biosynthesis , Gene Expression Regulation, Bacterial , Manganese/metabolism , Membrane Transport Proteins/biosynthesis , RNA, Bacterial/genetics , Streptococcus pneumoniae/genetics , Adenosine Triphosphatases/genetics , Aptamers, Nucleotide , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Calcium/pharmacology , Homeostasis , Manganese/pharmacology , Manganese/toxicity , Membrane Transport Proteins/genetics , Nucleic Acid Conformation/drug effects , RNA, Bacterial/metabolism , Riboswitch , Streptococcus pneumoniae/metabolism
7.
Proc Natl Acad Sci U S A ; 114(17): 4424-4429, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28348247

ABSTRACT

Allosteric communication between two ligand-binding sites in a protein is a central aspect of biological regulation that remains mechanistically unclear. Here we show that perturbations in equilibrium picosecond-nanosecond motions impact zinc (Zn)-induced allosteric inhibition of DNA binding by the Zn efflux repressor CzrA (chromosomal zinc-regulated repressor). DNA binding leads to an unanticipated increase in methyl side-chain flexibility and thus stabilizes the complex entropically; Zn binding redistributes these motions, inhibiting formation of the DNA complex by restricting coupled fast motions and concerted slower motions. Allosterically impaired CzrA mutants are characterized by distinct nonnative fast internal dynamics "fingerprints" upon Zn binding, and DNA binding is weakly regulated. We demonstrate the predictive power of the wild-type dynamics fingerprint to identify key residues in dynamics-driven allostery. We propose that driving forces arising from dynamics can be harnessed by nature to evolve new allosteric ligand specificities in a compact molecular scaffold.


Subject(s)
Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Entropy , Zinc/metabolism , Allosteric Regulation , Models, Molecular , Protein Binding , Protein Conformation , Staphylococcus aureus/metabolism , Temperature
8.
Inorg Chem ; 58(20): 13661-13672, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31247880

ABSTRACT

Members of the COG0523 subfamily of candidate GTPase metallochaperones function in bacterial transition-metal homeostasis, but the nature of the cognate metal, mechanism of metal transfer, and identification of target protein(s) for metal delivery remain open questions. Here, we explore the multifunctionality of members of the subfamily linked to delivering ZnII to apoprotein targets under conditions of host-imposed transition-metal depletion. We examine two zinc-uptake repressor (Zur)-regulated COG0523 family members, each from a major human pathogen, Acinetobacter baumannii (AbZigA) and Staphylococcus aureus (SaZigA), in an effort to develop a model for ZnII metallochaperone activity. ZnII chelator competition experiments reveal one high-affinity (KZn1 ≈ 1010-1011 M-1) metal-binding site in each GTPase, while AbZigA and SaZigA are characterized by an additional one and two (lower-affinity) metal-binding sites, respectively. CoII titrations reveal that both metallochaperones have similar electronic absorption characteristics that indicate the presence of two tetrahedral metal coordination sites. High-affinity metal binding at the CXCC motif activates the GTPase activity of both enzymes, with ZnII more effective than CoII. Both GTPases bind the product, GDP, more tightly in the apoprotein than the ZnII-bound state and exhibit what is best described as a "locked" conformation around the GTP substrate. Negative thermodynamic linkage is observed between nucleotide binding and metal binding, leading to a new mechanistic model for COG0523-catalyzed metal delivery.


Subject(s)
Metallochaperones/metabolism , Zinc/metabolism , Binding Sites , Metallochaperones/chemistry , Staphylococcus aureus/chemistry , Staphylococcus aureus/metabolism , Zinc/chemistry
9.
J Am Chem Soc ; 140(29): 9108-9119, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29953213

ABSTRACT

Allostery is a regulatory phenomenon whereby ligand binding to one site influences the binding of the same or a different ligand to another site on a macromolecule. The physical origins of allosteric regulation remain under intense investigation. In general terms, ligand-induced structural changes, perturbations of residue-specific dynamics, and surrounding solvent molecules all potentially contribute to the global energetics of allostery. While the role of solvent is generally well understood in regulatory events associated with major protein structural rearrangements, the degree to which protein dynamics impact solvent degrees of freedom is unclear, particularly in cases of dynamically driven allostery. With the aid of new crystal structures, extensive calorimetric and residue-specific dynamics studies over a range of time scales and temperatures, we dissect for the first time the relative degree to which changes in solvent entropy and residue-specific dynamics impact dynamically driven, allosteric inhibition of DNA binding by Zn in the zinc efflux repressor, CzrA (chromosomal zinc-regulated repressor). We show that non-native residue-specific dynamics in allosterically impaired CzrA mutants are accompanied by significant perturbations in solvent entropy that cannot be predicted from crystal structures. We conclude that functional dynamics are not necessarily restricted to protein residues but involve surface water molecules that may be responding to ligand (Zn)-mediated perturbations in protein internal motions that define the conformational ensemble, rather than major structural rearrangements.


Subject(s)
Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Entropy , Water/chemistry , Zinc/chemistry , Allosteric Regulation , Bacterial Proteins/genetics , Binding Sites , DNA-Binding Proteins/genetics , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Solvents/chemistry , Staphylococcus aureus/chemistry
10.
J Biol Chem ; 291(40): 20858-20868, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27462080

ABSTRACT

Among the biologically required first row, late d-block metals from MnII to ZnII, the catalytic and structural reach of ZnII ensures that this essential micronutrient touches nearly every major metabolic process or pathway in the cell. Zn is also toxic in excess, primarily because it is a highly competitive divalent metal and will displace more weakly bound transition metals in the active sites of metalloenzymes if left unregulated. The vertebrate innate immune system uses several strategies to exploit this "Achilles heel" of microbial physiology, but bacterial evolution has responded in kind. This review highlights recent insights into transcriptional, transport, and trafficking mechanisms that pathogens use to "win the fight" over zinc and thrive in an otherwise hostile environment.


Subject(s)
Bacteria/metabolism , Bacterial Physiological Phenomena , Host-Pathogen Interactions/physiology , Zinc/metabolism , Animals , Humans
11.
Biochemistry ; 55(3): 407-28, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26720007

ABSTRACT

Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxidative protein folding machinery, and presumably as a redox sensor in the cytosol, along with other reported functions. Transition to alternative conformations and gain-of-peroxidase activity are thought to further enable the multiple functions of cyt c and its translocation across cellular compartments. In vitro, direct interactions of cyt c with cardiolipin, post-translational modifications such as tyrosine nitration, phosphorylation, methionine sulfoxidation, mutations, and even fine changes in electrical fields lead to a variety of conformational states that may be of biological relevance. The identification of these alternative conformations and the elucidation of their functions in vivo continue to be a major challenge. Here, we unify the knowledge of the structural flexibility of cyt c that supports functional moonlighting and review biochemical and immunochemical evidence confirming that cyt c undergoes conformational changes during normal and altered cellular homeostasis.


Subject(s)
Cytochromes c/chemistry , Cytochromes c/metabolism , Animals , Cardiolipins/chemistry , Electricity , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Humans , Intracellular Space/metabolism , Phospholipids/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Conformation , Protein Folding , Protein Processing, Post-Translational , Protein Transport
12.
Biochemistry ; 54(51): 7491-504, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26620444

ABSTRACT

We report a resonance Raman and UV-vis characterization of the active site structure of oxidatively modified forms of cytochrome c (Cyt-c) free in solution and in complexes with cardiolipin (CL). The studied post-translational modifications of Cyt-c include methionine sulfoxidation and tyrosine nitration, which lead to altered heme axial ligation and increased peroxidase activity with respect to those of the wild-type protein. In spite of the structural and activity differences between the protein variants free in solution, binding to CL liposomes induces in all cases the formation of a spectroscopically identical bis-His axial coordination conformer that more efficiently promotes lipid peroxidation. The spectroscopic results indicate that the bis-His form is in equilibrium with small amounts of high-spin species, thus suggesting a labile distal His ligand as the basis for the CL-induced increase in enzymatic activity observed for all protein variants. For Cyt-c nitrated at Tyr74 and sulfoxidized at Met80, the measured apparent binding affinities for CL are ∼4 times larger than for wild-type Cyt-c. On the basis of these results, we propose that these post-translational modifications may amplify the pro-apoptotic signal of Cyt-c under oxidative stress conditions at CL concentrations lower than for the unmodified protein.


Subject(s)
Cardiolipins/chemistry , Cytochromes c/chemistry , Animals , Catalytic Domain , Horses , Protein Conformation , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
13.
bioRxiv ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38712145

ABSTRACT

Cell-free systems are powerful synthetic biology technologies because of their ability to recapitulate sensing and gene expression without the complications of living cells. Cell-free systems can perform even more advanced functions when genetic circuits are incorporated as information processing components. Here we expand cell-free biosensing by engineering a highly specific isothermal signal amplification circuit called polymerase strand recycling (PSR) that leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits. We develop design rules for PSR circuit components and use these rules to construct modular biosensors that can directly sense different RNA targets with limits of detection in the nM range and high specificity. We then use PSR for signal amplification within allosteric transcription factor-based biosensors for small molecule detection. We use a double equilibrium model of transcription factor:DNA and transcription factor:ligand binding interactions to predict biosensor sensitivity enhancement by PSR, and then demonstrate this approach experimentally by achieving 3.6-4.6-fold decreases in biosensor EC50 to sub micromolar ranges. We believe this work expands the current capabilities of cell-free circuits by incorporating PSR, which we anticipate will have a wide range of uses within biotechnology.

14.
Langmuir ; 29(17): 5351-9, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23560885

ABSTRACT

Self-assembled monolayers (SAMs) of amino-terminated alkanethiols on Au were characterized by a combination of electrochemical (LSV, CV, and EIS) and spectroscopic (XPS and SER) techniques. Clear correlations were obtained between the apparent surface pKa values determined by impedimetric titrations and order parameters such as the content of trans conformers in the SAMs. These results contrast with previous studies that exhibit dispersions of up to 6 pH units in the reported pKa values. In addition, we determined that inorganic and organic phosphate species bind specifically to these SAMs mediating adsorption and heterogeneous electron transfer of positively charged macromolecules such as cytochrome c.


Subject(s)
Sulfhydryl Compounds/chemical synthesis , Adsorption , Alkanes/chemistry , Cytochromes c/chemistry , Cytochromes c/metabolism , Electron Transport , Gold/chemistry , Hydrogen-Ion Concentration , Sulfhydryl Compounds/chemistry , Surface Properties
15.
Phys Chem Chem Phys ; 15(15): 5386-94, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23000972

ABSTRACT

The study of proteins immobilized on biomimetic or biocompatible electrodes represents an active field of research as it pursues both fundamental and technological interests. In this context, adsorption and redox properties of cytochrome c (Cyt) on different electrode surfaces have been extensively reported, although in some cases with contradictory results. Here we report a SERR spectroelectrochemical study of the adsorption and electron transfer behaviour of the basic protein Cyt on electrodes coated with amino-terminated monolayers. The obtained results show that inorganic phosphate (Pi) and ATP anions are able to mediate high affinity binding of the protein with preservation of the native structure and rendering an average orientation that guarantees efficient pathways for direct electron transfer. These findings aid the design of Cyt-based bioelectronic devices and understanding the modulation by Pi and ATP of physiological functions of Cyt.


Subject(s)
Cytochromes c/metabolism , Phosphates/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Adsorption , Cytochromes c/chemistry , Electrochemical Techniques , Electrodes , Electron Transport , Electrons , Kinetics , Oxidation-Reduction , Protein Structure, Tertiary , Spectrum Analysis, Raman , Time Factors
16.
Curr Opin Chem Biol ; 76: 102358, 2023 10.
Article in English | MEDLINE | ID: mdl-37399745

ABSTRACT

The infected host deploys generalized oxidative stress caused by small inorganic reactive molecules as antibacterial weapons. An emerging consensus is that hydrogen sulfide (H2S) and forms of sulfur with sulfur-sulfur bonds termed reactive sulfur species (RSS) provide protection against oxidative stressors and antibiotics, as antioxidants. Here, we review our current understanding of RSS chemistry and its impact on bacterial physiology. We start by describing the basic chemistry of these reactive species and the experimental approaches developed to detect them in cells. We highlight the role of thiol persulfides in H2S-signaling and discuss three structural classes of ubiquitous RSS sensors that tightly regulate cellular H2S/RSS levels in bacteria, with a specific focus on the chemical specificity of these sensors.


Subject(s)
Hydrogen Sulfide , Oxidative Stress , Oxidation-Reduction , Sulfur/chemistry , Bacteria
17.
PNAS Nexus ; 2(3): pgad048, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36909821

ABSTRACT

Sulfide plays essential roles in controlling various physiological activities in almost all organisms. Although recent evidence has demonstrated that sulfide is endogenously generated and metabolized into polysulfides inside the cells, the relationship between polysulfide metabolism and polysulfide-sensing mechanisms is not well understood. To better define this interplay between polysulfide metabolism and sensing in cells, we investigated the role of polysulfide-metabolizing enzymes such as sulfide:quinone oxidoreductase (SQR) on the temporal dynamics of cellular polysulfide speciation and on the transcriptional regulation by the persulfide-responsive transcription factor SqrR in Rhodobacter capsulatus. We show that disruption of the sqr gene resulted in the loss of SqrR repression by exogenous sulfide at longer culture times, which impacts the speciation of intracellular polysulfides of Δsqr vs. wild-type strains. Both the attenuated response of SqrR and the change in polysulfide dynamics of the Δsqr strain is fully reversed by the addition to cells of cystine-derived polysulfides, but not by glutathione disulfide (GSSG)-derived polysulfides. Furthermore, cysteine persulfide (CysSSH) yields a higher rate of oxidation of SqrR relative to glutathione persulfide (GSSH), which leads to DNA dissociation in vitro. The oxidation of SqrR was confirmed by a mass spectrometry-based kinetic profiling strategy that showed distinct polysulfide-crosslinked products obtained with CysSSH vs. GSSH. Taken together, these results establish a novel association between the metabolism of polysulfides and the mechanisms for polysulfide sensing inside the cells.

18.
bioRxiv ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993174

ABSTRACT

The vertebrate host’s immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae , sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass-spectrometry-based profiling, metabolomics, expression assays and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular reactive sulfur species (RSS), specifically sulfane sulfur. We first present a comprehensive sequence similarity network analysis of the arsenic repressor (ArsR) superfamily of transcriptional regulators where RSS and reactive oxygen species (ROS) sensors segregate into distinct clusters. We show that HlyU, transcriptional activator of hlyA in V. cholerae , belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity and remaining DNA-bound following treatment with various ROS in vitro, including H 2 O 2 . Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA . However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.

19.
STAR Protoc ; 3(2): 101424, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35634358

ABSTRACT

Hydrogen sulfide (H2S) and downstream reactive sulfur species (RSS), including organic persulfides, protect bacterial cells against diverse oxidative stressors. Specialized dithiol-based transcriptional repressors sense persulfides directly to control cellular H2S/RSS and avoid toxicity. Here, we present a protocol to quantify the kinetics of chemical reactivity of cysteines in two bacterial persulfide sensors toward cysteine persulfide and glutathione persulfide, with a LC-ESI-MS analysis that results in a kinetic model. This protocol has potential applications to other cysteine-containing proteins and oxidants. For complete details on the use and execution of this protocol, please refer to Fakhoury et al. (2021) and Capdevila et al. (2021).


Subject(s)
Hydrogen Sulfide , Sulfides , Chromatography, Liquid , Hydrogen Sulfide/metabolism , Oxidation-Reduction , Sulfides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL