Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 104(5): 914-924, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982611

ABSTRACT

Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.


Subject(s)
Deafness/congenital , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Genetic Variation , Glypicans/genetics , Lower Extremity Deformities, Congenital/genetics , Lower Extremity Deformities, Congenital/pathology , Adult , Child , Child, Preschool , Deafness/genetics , Deafness/pathology , Female , Humans , Infant , Male , Pedigree , Phenotype , Young Adult
2.
Am J Med Genet A ; 188(4): 1149-1159, 2022 04.
Article in English | MEDLINE | ID: mdl-34971082

ABSTRACT

Congenital heart defects (CHDs) are known to occur in 9%-25% of patients with KBG syndrome. In this study we analyzed the prevalence and anatomic types of CHDs in 46 personal patients with KBG syndrome, carrying pathogenetic variants in ANKRD11 or 16q24.3 deletion, and reviewed CHDs in patients with molecular diagnosis of KBG syndrome from the literature. CHD was diagnosed in 15/40 (38%) patients with ANKRD11 variant, and in one patient with 16q24.3 deletion. Left ventricular outflow tract obstructions have been diagnosed in 9/15 (60%), subaortic or muscular ventricular septal defect in 5/15 (33%), dextrocardia in 1/15 (8%). The single patient with 16q24.3 deletion and CHD had complete atrioventricular septal defect (AVSD) with aortic coarctation. Review of KBG patients from the literature and present series showed that septal defects have been diagnosed in 44% (27/61) of the cases, left ventricular tract obstructions in 31% (19/61), AVSD in 18% (11/61). Septal defects have been diagnosed in 78% of total patients with 16q24.3 deletion. Valvar anomalies are frequently diagnosed, prevalently involving the left side of the heart. A distinctive association with AVSD is identifiable and could represent a marker to suggest the diagnosis in younger patients. In conclusion, after precise molecular diagnosis and systematic cardiological screening the prevalence of CHD in KBG syndrome seems to be higher than previously reported in clinical articles. In addition to septal defects, left-sided anomalies and AVSD should be considered. Clinical management of KBG syndrome should include accurate and detailed echocardiogram at time of diagnosis.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Heart Defects, Congenital , Intellectual Disability , Tooth Abnormalities , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/genetics , Chromosome Deletion , Facies , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Heart Septal Defects , Humans , Intellectual Disability/genetics , Tooth Abnormalities/genetics , Transcription Factors
3.
Am J Med Genet A ; 188(10): 2958-2968, 2022 10.
Article in English | MEDLINE | ID: mdl-35904974

ABSTRACT

Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.


Subject(s)
Hernias, Diaphragmatic, Congenital , Animals , DNA Copy Number Variations , Diaphragm , Hernias, Diaphragmatic, Congenital/genetics , Mice
4.
Int J Mol Sci ; 22(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451138

ABSTRACT

We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis.


Subject(s)
Collagen Type I/genetics , Homeodomain Proteins/genetics , Homozygote , Human Growth Hormone/deficiency , Mutation , Osteoporosis/diagnosis , Osteoporosis/etiology , Adolescent , Age of Onset , Amino Acid Substitution , Collagen Type I/chemistry , Collagen Type I, alpha 1 Chain , DNA Mutational Analysis , Facies , Genetic Association Studies , Genetic Predisposition to Disease , Homeodomain Proteins/chemistry , Humans , Hypopituitarism/complications , Hypopituitarism/genetics , Magnetic Resonance Imaging , Male , Models, Molecular , Phenotype , Polymorphism, Single Nucleotide , Radiography , Structure-Activity Relationship
5.
Am J Med Genet A ; 182(8): 1977-1984, 2020 08.
Article in English | MEDLINE | ID: mdl-32573066

ABSTRACT

The tubulinopathies refer to a wide range of brain malformations caused by mutations in one of the seven genes encoding different tubulin's isotypes. The ß-tubulin isotype III (TUBB3) gene has a primary function in nervous system development and axon generation and maintenance, due to its neuron-specific expression pattern. A recurrent heterozygous mutation, c.1228G > A; p.E410K, in TUBB3 gene is responsible of a rare disorder clinically characterized by congenital fibrosis of the extraocular muscle type 3 (CFEOM3), intellectual disability and a wide range of neurological and endocrine abnormalities. Other mutations have been described spanning the entire gene and genotype-phenotype correlations have been proposed. We report on a 3-year-old boy in whom clinical exome sequencing allowed to identify a de novo TUBB3 E410K mutation as the molecular cause underlying a complex phenotype characterized by a severe bilateral palpebral ptosis refractory to eye surgery, psychomotor delay, absent speech, hypogonadism, celiac disease, and cyclic vomiting. Brain MRI revealed thinning of the corpus callosum with no evidence of malformation cortical dysplasia. We reviewed available records of patients with TUBB3 E410K mutation and compared their phenotype with the clinical outcome of patients with other mutations in TUBB3 gene. The present study confirms that TUBB3 E410K results in a clinically recognizable phenotype, unassociated to the distinct cortical dysplasia caused by other mutations in the same gene. Early molecular characterization of TUBB3 E410K syndrome is critical for targeted genetic counseling and prompt prospective care in term of neurological, ophthalmological, endocrine, and gastrointestinal follow-up.


Subject(s)
Fibrosis/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Malformations of Cortical Development/genetics , Ophthalmoplegia/genetics , Tubulin/genetics , Brain/abnormalities , Child, Preschool , Fibrosis/complications , Fibrosis/diagnosis , Fibrosis/pathology , Gene Expression Regulation, Developmental/genetics , Genetic Association Studies , Humans , Intellectual Disability/complications , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Male , Malformations of Cortical Development/complications , Malformations of Cortical Development/diagnosis , Malformations of Cortical Development/pathology , Neurons/metabolism , Neurons/pathology , Ophthalmoplegia/complications , Ophthalmoplegia/diagnosis , Ophthalmoplegia/pathology , Exome Sequencing
6.
Am J Med Genet A ; 182(5): 1073-1083, 2020 05.
Article in English | MEDLINE | ID: mdl-32124548

ABSTRACT

KBG syndrome (MIM #148050) is an autosomal dominant disorder characterized by developmental delay, intellectual disability, distinct craniofacial anomalies, macrodontia of permanent upper central incisors, skeletal abnormalities, and short stature. This study describes clinical features of 28 patients, confirmed by molecular testing of ANKRD11 gene, and three patients with 16q24 deletion encompassing ANKRD11 gene, diagnosed in a single center. Common clinical features are reported, together with uncommon findings, clinical expression in the first years of age, distinctive associations, and familial recurrences. Unusual manifestations emerging from present series include juvenile idiopathic arthritis, dysfunctional dysphonia, multiple dental agenesis, idiopathic precocious telarche, oral frenula, motor tics, and lipoma of corpus callosum, pilomatrixoma, and endothelial corneal polymorphic dystrophy. Facial clinical markers suggesting KBG syndrome before 6 years of age include ocular and mouth conformation, wide eyebrows, synophrys, long black eyelashes, long philtrum, thin upper lip. General clinical symptoms leading to early genetic evaluation include developmental delay, congenital malformations, hearing anomalies, and feeding difficulties. It is likely that atypical clinical presentation and overlapping features in patients with multiple variants are responsible for underdiagnosis in KBG syndrome. Improved knowledge of common and atypical features of this disorder improves clinical management.


Subject(s)
Abnormalities, Multiple/genetics , Bone Diseases, Developmental/genetics , Dwarfism/genetics , Intellectual Disability/genetics , Repressor Proteins/genetics , Tooth Abnormalities/genetics , Abnormalities, Multiple/pathology , Bone Diseases, Developmental/pathology , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 16/genetics , Comparative Genomic Hybridization , Dwarfism/pathology , Facies , Female , Genetic Predisposition to Disease , Humans , Intellectual Disability/pathology , Male , Phenotype , Tooth Abnormalities/pathology
7.
Am J Med Genet A ; 179(1): 113-117, 2019 01.
Article in English | MEDLINE | ID: mdl-30569626

ABSTRACT

Kabuki syndrome (KS) is an extremely rare genetic disorder, mainly caused by germline mutations at specific epigenetic modifier genes, including KMT2D. Because the tumor suppressor gene KMT2D is also frequently altered in many cancer types, it has been suggested that KS may predispose to the development of cancer. However, KS being a rare disorder, few data are available on the incidence of cancer in KS patients. Here, we report the case of a 5-year-old boy affected by KS who developed Burkitt lymphoma (BL). Genetic analysis revealed the presence of a novel heterozygous mutation in the splice site of the intron 4 of KMT2D gene in both peripheral blood-extracted DNA and tumour cells. In addition, the tumour sample of the patient was positive for the classical somatic chromosomal translocation t(8;14) involving the c-MYC gene frequently identified in BL. We propose that the mutated KMT2D gene contributes to the development of both KS and BL observed in our patient and we suggest that strict surveillance must be performed in KS patients.


Subject(s)
Abnormalities, Multiple/genetics , Burkitt Lymphoma/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/genetics , Neoplasm Proteins/genetics , Protein Isoforms/genetics , Vestibular Diseases/genetics , Abnormalities, Multiple/physiopathology , Burkitt Lymphoma/complications , Burkitt Lymphoma/physiopathology , Child, Preschool , Face/physiopathology , Hematologic Diseases/complications , Hematologic Diseases/physiopathology , Humans , Male , Mutation , Proto-Oncogene Proteins c-myc/genetics , Translocation, Genetic/genetics , Vestibular Diseases/complications , Vestibular Diseases/physiopathology
8.
Am J Med Genet A ; 176(12): 2781-2786, 2018 12.
Article in English | MEDLINE | ID: mdl-30289615

ABSTRACT

DCPS gene encodes for a protein involved in gene expression regulation through promoting cap degradation during mRNA decapping processes. Mutations altering the DCPS function have been associated to a distinct disorder, Al-Raqad syndrome, so far described only in two families. We report on a patient harboring a novel homozygous missense mutation in DCPS, presenting with growth retardation, craniofacial anomalies, skin dyschromia, and neuromuscular defects. This case study explains the molecular spectrum of DCPS mutations and might contribute to the phenotypic delineation of this rare condition.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Endoribonucleases/genetics , Homozygote , Mutation , Alleles , Child, Preschool , Exons , Female , Genes, Recessive , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Phenotype , Syndrome
9.
Am J Med Genet A ; 173(11): 2912-2922, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28884922

ABSTRACT

The prevalence of congenital heart defects (CHD) in Kabuki syndrome ranges from 28% to 80%. Between January 2012 and December 2015, 28 patients had a molecularly proven diagnosis of Kabuki syndrome. Pathogenic variants in KMT2D (MLL2) were detected in 27 patients, and in KDM6A gene in one. CHD was diagnosed in 19/27 (70%) patients with KMT2D (MLL2) variant, while the single patient with KDM6A change had a normal heart. The anatomic types among patients with CHD included aortic coarctation (4/19 = 21%) alone or associated with an additional CHD, bicuspid aortic valve (4/19 = 21%) alone or associated with an additional CHD, perimembranous subaortic ventricular septal defect (3/19 = 16%), atrial septal defect ostium secundum type (3/19 = 16%), conotruncal heart defects (3/19 = 16%). Additional CHDs diagnosed in single patients included aortic dilatation with mitral anomaly and hypoplastic left heart syndrome. We also reviewed CHDs in patients with a molecular diagnosis of Kabuki syndrome reported in the literature. In conclusion, a CHD is detected in 70% of patients with KMT2D (MLL2) pathogenic variants, most commonly left-sided obstructive lesions, including multiple left-sided obstructions similar to those observed in the spectrum of the Shone complex, and septal defects. Clinical management of Kabuki syndrome should include echocardiogram at the time of diagnosis, with particular attention to left-sided obstructive lesions and mitral anomalies, and annual monitoring for aortic arch dilatation.


Subject(s)
Abnormalities, Multiple/genetics , Aortic Valve Stenosis/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Heart Defects, Congenital/genetics , Hematologic Diseases/genetics , Neoplasm Proteins/genetics , Vestibular Diseases/genetics , Abnormalities, Multiple/physiopathology , Aortic Coarctation/complications , Aortic Coarctation/genetics , Aortic Coarctation/physiopathology , Aortic Valve/abnormalities , Aortic Valve/physiopathology , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/physiopathology , Bicuspid Aortic Valve Disease , Face/physiopathology , Female , Heart Defects, Congenital/complications , Heart Defects, Congenital/physiopathology , Heart Septal Defects, Atrial/genetics , Heart Septal Defects, Atrial/physiopathology , Heart Septal Defects, Ventricular/genetics , Heart Septal Defects, Ventricular/physiopathology , Heart Valve Diseases/genetics , Heart Valve Diseases/physiopathology , Hematologic Diseases/complications , Hematologic Diseases/physiopathology , Histone Demethylases/genetics , Humans , Male , Nuclear Proteins/genetics , Vestibular Diseases/complications , Vestibular Diseases/physiopathology
10.
Am J Med Genet A ; 173(7): 1943-1946, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28489314

ABSTRACT

Pallister-Killian syndrome (PKS-#OMIM601803) is a multisystem developmental disorder typically due to the presence of an aneuploidy cell line, consisting of a supernumerary tetrasomic chromosomal marker (SCM) arisen from the short arm of chromosome 12 (12p isochromosome). The clinical phenotype, which is strictly related to the percentage and tissue distribution of aneuploid cells, is characterized by craniofacial dysmorphisms, pigmentary skin anomalies, limb shortening, congenital heart defects, diaphragmatic hernia, hypotonia, intellectual disability, and epilepsy. We report on a 4 year-old girl harboring a 12p partial isochromosome, involving the PKS critical region, affecting about 70% of circulating lymphocytes, urine, and saliva cells and fibroblast from a hyperpigmented skin spot, and 100% of fibroblasts from a hypopigmented skin spot. Interestingly, despite the high proportion of affected cells this patient did not present with PKS, and a pattern of linear and patchy pigmentary mosaicism was the sole clinical manifestation. The present observation suggests that partial 12p SCM can also result in mild phenotypes, and its prevalence in the human population could have been underestimated. Accurate dermatologic evaluation could be a major handle for genetic testing.

11.
Am J Med Genet A ; 173(9): 2353-2358, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28631895

ABSTRACT

In children with neurofibromatosis type 1 (NF1) and optic pathways glioma (OPG), growth hormone (GH) excess has been rarely reported and mainly associated to central precocious puberty. The aim of our study is to evaluate the prevalence of GH excess, the association with central precocious puberty, the relation with tumor site and the evolution over time in a large cohort of children with NF1 and OPG. Sixty-four NF1 children with OPG were evaluated. Patients with stature and/or height velocity >2 SD for age were studied for GH secretion. Seven out of 64 children (10.9%) with NF1 and optic pathways glioma showed GH excess, isolated in 5 cases and associated to central precocious puberty in 2. All the children with GH excess had a tumor involving the chiasma. Children with GH excess underwent medical treatment with lanreotide and a minimum clinical/biochemical follow up of 2 years is reported. The present study demonstrates that GH excess should be considered as a relative frequent endocrine manifestation in NF1 patients, similarly to central precocious puberty. Therefore, these patients should undergo frequent accurate auxologic evaluations. On the other hand, an increase in height velocity in children with NF1, even despite normal ophthalmological exams, can suggest the presence of OPG and therefore represents an indication to perform brain MRI.


Subject(s)
Brain/physiopathology , Growth Hormone/genetics , Neurofibromatosis 1/genetics , Optic Nerve Glioma/genetics , Acromegaly/genetics , Acromegaly/physiopathology , Adolescent , Brain/diagnostic imaging , Child , Child, Preschool , Female , Humans , Magnetic Resonance Imaging , Male , Neurofibromatosis 1/complications , Neurofibromatosis 1/diagnostic imaging , Neurofibromatosis 1/physiopathology , Optic Nerve Glioma/complications , Optic Nerve Glioma/diagnostic imaging , Optic Nerve Glioma/physiopathology , Puberty, Precocious/genetics , Puberty, Precocious/physiopathology
12.
Am J Med Genet A ; 170(3): 661-4, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26686844

ABSTRACT

Sprengel anomaly (SA) is a rare skeletal defect characterized by uni- or bi-lateral elevation of the scapula. This anomaly is often isolated, although it can occur in association with other defects, including cervical spine malformations, cleft palate, and facial anomalies. Neural crest migration anomalies have been involved in the etiology of SA. Since the same embryological pathway accounts for some of the clinical features of deletion 22q11.2 syndrome (del22q11.2; DiGeorge/Velo-Cardio-Facial syndrome), we investigated the occurrence of SA in a consecutive series of 235 del22q11.2 patients aged more than 2 years, undergoing a complete clinical and orthopedic assessment of the dorsal and thoracic skeleton. In the present series, two patients were diagnosed with true SA. Present results and published reports suggest that scapular involvement including SA occurs in 1-2% of del22q11.2 individuals. Accordingly, this anomaly should be investigated as one of the possible skeletal findings of del22q11.2 syndrome, while this diagnosis should be excluded in patients presenting with SA associated with other defects.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 22 , Congenital Abnormalities/diagnosis , DiGeorge Syndrome/diagnosis , Scapula/abnormalities , Shoulder Joint/abnormalities , Adolescent , Adult , Child , Child, Preschool , Congenital Abnormalities/diagnostic imaging , Congenital Abnormalities/genetics , DiGeorge Syndrome/diagnostic imaging , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Female , Humans , Male , Retrospective Studies , Scapula/diagnostic imaging , Scapula/metabolism , Scapula/pathology , Shoulder Joint/diagnostic imaging
13.
BMC Med Genet ; 16: 80, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-26341229

ABSTRACT

BACKGROUND: Kabuki syndrome is a rare disorder characterized by the association of mental retardation and postnatal growth deficiency with distinctive facial appearance, skeletal anomalies, cardiac and renal malformation. Two causative genes have been identified in patients with Kabuki syndrome. Mutation of KMT2D (MLL2) was identified in 55-80% of patients, while 9-14% of KMT2D negative patients have mutation in KDM6A gene. So far, few tumors have been reported in patients with Kabuki syndrome. We describe the first case of a patient with spinal ependymoma and Kabuki syndrome. CASE PRESENTATION: A 23 years old girl followed at our Center for KMT2D mutated Kabuki syndrome since she was 4 years old presented with acute lumbar pain and intermittent tactile hyposthenia of the feet. Spine magnetic resonance revealed a lumbar endocanalar mass. She underwent surgical resection of the lesion and histologic examination showed a tanycytic ependymoma (WHO grade II). CONCLUSION: Kabuki syndrome is not considered a cancer predisposition syndrome. Nonetheless, a number of tumors have been reported in patients with Kabuki syndrome. Spinal ependymoma is a rare disease in the pediatric and young adult population. Whereas NF2 mutations are frequently associated to ependymoma such an association has never been described in Kabuki syndrome. To our knowledge this is the first case of ependymoma in a KMT2D mutated Kabuki syndrome patient. Despite KMT2D role in cancer has previously been described, no genetic data are available for previously reported Kabuki syndrome patients with tumors. Nonetheless, the association of two rare diseases raises the suspicion for a common determinant.


Subject(s)
Ependymoma/pathology , Face/abnormalities , Hematologic Diseases/complications , Spinal Cord Neoplasms/pathology , Spinal Cord Neoplasms/surgery , Vestibular Diseases/complications , Abnormalities, Multiple/pathology , Ependymoma/etiology , Face/pathology , Female , Hematologic Diseases/pathology , Humans , Magnetic Resonance Imaging , Spinal Cord Neoplasms/etiology , Vestibular Diseases/pathology , Young Adult
14.
Am J Med Genet A ; 167A(3): 579-86, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25663264

ABSTRACT

Hypoplastic left heart syndrome (HLHS) is a rare congenital heart defect (CHD), associated with extracardiac anomalies in the 15-28% of cases, in the setting of chromosomal anomalies, mendelian disorders, and organ defects. We report on a syndromic female newborn with HLHS and terminal 21q22.3 deletion (del 21q22.3), investigated by Fluorescence In Situ Hybridization (FISH) using a panel of 26 contiguous BAC probes. Although rare, del 21q22.3 has been described in two additional patients with HLHS. In order to investigate the frequency and role of this chromosomal imbalance in the pathogenesis of left-sided obstructive heart defects, we screened for del 21q22.3 a series of syndromic and non-syndromic children with HLHS, aortic coarctation and valvular aortic stenosis, consecutively admitted to our hospital in a three-year period. Although none of the 56 analyzed patients were hemizygous for this region, the present case report and published patients argue that del 21q22 should be added to the list of chromosomal imbalances associated with HLHS. Accordingly, the presence of a cardiac locus mapping in the critical region cannot be excluded.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 21 , Hypoplastic Left Heart Syndrome/diagnosis , Hypoplastic Left Heart Syndrome/genetics , Chromosome Banding , Chromosome Breakpoints , Chromosome Mapping , Female , Genetic Association Studies , Genetic Heterogeneity , Humans , In Situ Hybridization, Fluorescence , Ligase Chain Reaction , Phenotype
15.
BMC Med Genet ; 15: 14, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24451042

ABSTRACT

BACKGROUND: Noonan syndrome is an autosomal dominant developmental disorder with a high phenotypic variability, which shares clinical features with other rare conditions, including LEOPARD syndrome, cardiofaciocutaneous syndrome, Noonan-like syndrome with loose anagen hair, and Costello syndrome. This group of related disorders, so-called RASopathies, is caused by germline mutations in distinct genes encoding for components of the RAS-MAPK signalling pathway. Due to high number of genes associated with these disorders, standard diagnostic testing requires expensive and time consuming approaches using Sanger sequencing. In this study we show how targeted Next Generation Sequencing (NGS) technique can enable accurate, faster and cost-effective diagnosis of RASopathies. METHODS: In this study we used a validation set of 10 patients (6 positive controls previously characterized by Sanger-sequencing and 4 negative controls) to assess the analytical sensitivity and specificity of the targeted NGS. As second step, a training set of 80 enrolled patients with a clinical suspect of RASopathies has been tested. Targeted NGS has been successfully applied over 92% of the regions of interest, including exons for the following genes: PTPN11, SOS1, RAF1, BRAF, HRAS, KRAS, NRAS, SHOC, MAP2K1, MAP2K2, CBL. RESULTS: All expected variants in patients belonging to the validation set have been identified by targeted NGS providing a detection rate of 100%. Furthermore, all the newly detected mutations in patients from the training set have been confirmed by Sanger sequencing. Absence of any false negative event has been excluded by testing some of the negative patients, randomly selected, with Sanger sequencing. CONCLUSION: Here we show how molecular testing of RASopathies by targeted NGS could allow an early and accurate diagnosis for all enrolled patients, enabling a prompt diagnosis especially for those patients with mild, non-specific or atypical features, in whom the detection of the causative mutation usually requires prolonged diagnostic timings when using standard routine. This approach strongly improved genetic counselling and clinical management.


Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Adolescent , Base Sequence , Child , Child, Preschool , Female , Genomics , Humans , Infant , Male , Mutation , Reproducibility of Results
16.
Diagnostics (Basel) ; 14(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38535015

ABSTRACT

Sotos syndrome is an autosomal dominant condition characterized by overgrowth with advanced bone age, macrodolicocephaly, motor developmental delays and learning difficulties, and characteristic facial features caused by heterozygous pathogenetic variants in the NSD1 gene located on chromosome 5q35. The prevalence of heart defects (HDs) in individuals with Sotos syndrome is estimated to be around 15-40%. Septal defects and patent ductus arteriosus are the most commonly diagnosed malformations, but complex defects have also been reported. The aim of our study was to analyze the prevalence of HD, the anatomic types, and the genetic characteristics of 45 patients with Sotos syndrome carrying pathogenetic variants of NSD1 or a 5q35 deletion encompassing NSD1, who were followed at Bambino Gesù Children's Hospital in Rome. Thirty-nine of the forty-five patients (86.7%) had a mutation in NSD1, while six of the forty-five (13.3%) had a deletion. Most of the patients (62.2%, 28/45) were male, with a mean age of 14 ± 7 years (range 0.2-37 years). A total of 27/45 (60.0%) of the patients had heart defects, isolated or combined with other defects, including septal defects (12 patients), aortic anomalies (9 patients), mitral valve and/or tricuspid valve dysplasia/insufficiency (1 patient), patent ductus arteriosus (3 patients), left ventricular non-compaction/hypertrabeculated left ventricle (LV) (4 patients), aortic coarctation (1 patient), aortopulmonary window (1 patient), and pulmonary valve anomalies (3 patients). The prevalences of HD in the two subgroups (deletion versus intragenic mutation) were similar (66.7% (4/6) in the deletion group versus 58.91% (23/39) in the intragenic variant group). Our results showed a higher prevalence of HD in patients with Sotos syndrome in comparison to that described in the literature, with similar distributions of patients with mutated and deleted genes. An accurate and detailed echocardiogram should be performed in patients with Sotos syndrome at diagnosis, and a specific cardiological follow-up program is needed.

17.
Cardiol Young ; 23(1): 14-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22391434

ABSTRACT

AIM/OBJECTIVE: Several studies have demonstrated a significantly increased risk of specific patterns of congenital anomalies in infants born to diabetic mothers. In particular, caudal dysplasia sequence has been linked to pregnancy complicated by maternal diabetes. In addition, several cases of infants born to diabetic mothers presenting with features of DiGeorge anomaly have been reported. Infants with DiGeorge anomaly can display additional manifestations within the spectrum of caudal dysplasia sequence, including vertebral anomalies and renal agenesis. METHODS: We report a neonate presenting with the co-occurrence of features of both DiGeorge anomaly and caudal dysplasia sequence, born to a mother with poorly controlled insulin-dependent diabetes. RESULTS: The patient was affected by truncus arteriosus type A1 and hypertrophic cardiomyopathy. CONCLUSION: Maternal diabetes can cause a spectrum of manifestations, expressing with isolated DiGeorge anomaly or caudal dysplasia sequence, with intermediate phenotypes or with the co-occurrence of both the congenital anomalies in the same patient. The present observations argue for a feasible link between truncus arteriosus with hypertrophic cardiomyopathy, DiGeorge anomaly, and maternal diabetes.


Subject(s)
Abnormalities, Multiple , DiGeorge Syndrome , Diabetes Mellitus, Type 1 , Kidney/abnormalities , Meningocele , Pregnancy in Diabetics , Sacrococcygeal Region/abnormalities , Urogenital Abnormalities , Female , Humans , Infant, Newborn , Pregnancy
18.
Sci Rep ; 13(1): 9797, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328513

ABSTRACT

Williams-Beuren syndrome (WBS) is a multisystem genetic disease caused by the deletion of a region of 1.5-1.8 Mb on chromosome 7q11.23. The elastin gene seems to account for several comorbidities and distinct clinical features such including cardiovascular disease, connective tissue abnormalities, growth retardation, and gastrointestinal (GI) symptoms. Increasing evidence points to alterations in gut microbiota composition as a primary or secondary cause of some GI or extra-intestinal characteristics. In this study, we performed the first exploratory analysis of gut microbiota in WBS patients compared to healthy subjects (CTRLs) using 16S rRNA amplicon sequencing, by investigating the gut dysbiosis in relation to diseases and comorbidities. We found that patients with WBS have significant dysbiosis compared to age-matched CTRLs, characterized by an increase in proinflammatory bacteria such as Pseudomonas, Gluconacetobacter and Eggerthella, and a reduction of anti-inflammatory bacteria including Akkermansia and Bifidobacterium. Microbial biomarkers associated with weight gain, GI symptoms and hypertension were identified. Gut microbiota profiling could represent a new tool that characterise intestinal dysbiosis to complement the clinical management of these patients. In particular, the administration of microbial-based treatments, alongside traditional therapies, could help in reducing or preventing the burden of these symptoms and improve the quality of life of these patients.


Subject(s)
Gastrointestinal Diseases , Gastrointestinal Microbiome , Williams Syndrome , Humans , Williams Syndrome/genetics , Williams Syndrome/diagnosis , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , Quality of Life , Gastrointestinal Diseases/complications
19.
Sci Rep ; 13(1): 18963, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923896

ABSTRACT

Williams-Beuren syndrome (WBS) is a rare genetic neurodevelopmental disorder with multi-systemic manifestations. The evidence that most subjects with WBS face gastrointestinal (GI) comorbidities, have prompted us to carry out a metaproteomic investigation of their gut microbiota (GM) profile compared to age-matched healthy subjects (CTRLs). Metaproteomic analysis was carried out on fecal samples collected from 41 individuals with WBS, and compared with samples from 45 CTRLs. Stool were extracted for high yield in bacterial protein group (PG) content, trypsin-digested and analysed by nanoLiquid Chromatography-Mass Spectrometry. Label free quantification, taxonomic assignment by the lowest common ancestor (LCA) algorithm and functional annotations by COG and KEGG databases were performed. Data were statistically interpreted by multivariate and univariate analyses. A WBS GM functional dissimilarity respect to CTRLs, regardless age distribution, was reported. The alterations in function of WBSs GM was primarily based on bacterial pathways linked to carbohydrate transport and metabolism and energy production. Influence of diet, obesity, and GI symptoms was assessed, highlighting changes in GM biochemical patterns, according to WBS subsets' stratification. The LCA-derived ecology unveiled WBS-related functionally active bacterial signatures: Bacteroidetes related to over-expressed PGs, and Firmicutes, specifically the specie Faecalibacterium prausnitzii, linked to under-expressed PGs, suggesting a depletion of beneficial bacteria. These new evidences on WBS gut dysbiosis may offer novel targets for tailored interventions.


Subject(s)
Gastrointestinal Microbiome , Williams Syndrome , Humans , Bacteria/genetics , Firmicutes , Gastrointestinal Tract
20.
Biomolecules ; 13(5)2023 04 23.
Article in English | MEDLINE | ID: mdl-37238595

ABSTRACT

Neurofibromatosis type 1 is an autosomal-dominant condition caused by NF1 gene inactivation. Clinical diagnosis is corroborated by genetic tests on gDNA and cDNA, which are inconclusive in approximately 3-5% of cases. Genomic DNA approaches may overlook splicing-affecting intronic variants and structural rearrangements, especially in regions enriched in repetitive sequences. On the other hand, while cDNA-based methods provide direct information about the effect of a variant on gene transcription, they are hampered by non-sense-mediated mRNA decay and skewed or monoallelic expression. Moreover, analyses on gene transcripts in some patients do not allow tracing back to the causative event, which is crucial for addressing genetic counselling, prenatal monitoring, and developing targeted therapies. We report on a familial NF1, caused by an insertion of a partial LINE-1 element inside intron 15, leading to exon 15 skipping. Only a few cases of LINE-1 insertion have been reported so far, hampering gDNA studies because of their size. Often, they result in exon skipping, and their recognition of cDNA may be difficult. A combined approach, based on Optical Genome Mapping, WGS, and cDNA studies, enabled us to detect the LINE-1 insertion and test its effects. Our results improve knowledge of the NF1 mutational spectrum and highlight the importance of custom-built approaches in undiagnosed patients.


Subject(s)
Neurofibromatosis 1 , Pregnancy , Female , Humans , Neurofibromatosis 1/genetics , Neurofibromatosis 1/diagnosis , Introns/genetics , DNA, Complementary , Long Interspersed Nucleotide Elements/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL