Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Transl Med ; 21(1): 864, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017492

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers with a very low survival rate at 5 years. The use of chemotherapeutic agents results in only modest prolongation of survival and is generally associated with the occurrence of toxicity effects. Antibody-based immunotherapy has been proposed for the treatment of PDAC, but its efficacy has so far proved limited. The proteoglycan glypican-1 (GPC1) may be a useful immunotherapeutic target because it is highly expressed on the surface of PDAC cells, whereas it is not expressed or is expressed at very low levels in benign neoplastic lesions, chronic pancreatitis, and normal adult tissues. Here, we developed and characterized a specific mouse IgM antibody (AT101) targeting GPC1. METHODS: We developed a mouse monoclonal antibody of the IgM class directed against an epitope of GPC1 in close proximity to the cell membrane. For this purpose, a 46 amino acid long peptide of the C-terminal region was used to immunize mice by an in-vivo electroporation protocol followed by serum titer and hybridoma formation. RESULTS: The ability of AT101 to bind the GPC1 protein was demonstrated by ELISA, and by flow cytometry and immunofluorescence analysis in the GPC1-expressing "PDAC-like" BXPC3 cell line. In-vivo experiments in the BXPC3 xenograft model showed that AT101 was able to bind GPC1 on the cell surface and accumulate in the BXPC3 tumor masses. Ex-vivo analyses of BXPC3 tumor masses showed that AT101 was able to recruit immunological effectors (complement system components, NK cells, macrophages) to the tumor site and damage PDAC tumor tissue. In-vivo treatment with AT101 reduced tumor growth and prolonged survival of mice with BXPC3 tumor (p < 0.0001). CONCLUSIONS: These results indicate that AT101, an IgM specific for an epitope of GPC1 close to PDAC cell surface, is a promising immunotherapeutic agent for GPC1-expressing PDAC, being able to selectively activate the complement system and recruit effector cells in the tumor microenvironment, thus allowing to reduce tumor mass growth and improve survival in treated mice.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Adult , Humans , Mice , Animals , Glypicans/metabolism , Glypicans/therapeutic use , Pancreatic Neoplasms/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Immunotherapy , Epitopes , Immunoglobulin M , Cell Line, Tumor , Tumor Microenvironment
2.
Haematologica ; 108(7): 1861-1872, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36172817

ABSTRACT

ß2-glycoprotein I (ß2-GPI) is a serum protein widely recognized as the main target of antibodies present in patients with antiphospholipid syndrome (APS). ß2-GPI binds to activated endothelial cells, platelets and leukocytes, key players in thrombus formation. We developed a new targeted thrombolytic agent consisting of nanobubbles (NB) coated with recombinant tissue plasminogen activator (rtPA) and a recombinant antibody specific for cell-bound ß2-GPI. The therapeutic efficacy of targeted NB was evaluated in vitro, using platelet-rich blood clots, and in vivo in three different animal models: i) thrombosis developed in a rat model of APS; ii) ferric chloride-induced mesenteric thrombosis in rats, and iii) thrombotic microangiopathy in a mouse model of atypical hemolytic uremic syndrome (C3-gain-of-function mice). Targeted NB bound preferentially to platelets and leukocytes within thrombi and to endothelial cells through ß2-GPI expressed on activated cells. In vitro, rtPA-targeted NB (rtPA-tNB) induced greater lysis of platelet-rich blood clots than untargeted NB. In a rat model of APS, administration of rtPA-tNB caused rapid dissolution of thrombi and, unlike soluble rtPA that induced transient thrombolysis, prevented new thrombus formation. In a rat model of ferric chloride triggered thrombosis, rtPA-tNB, but not untargeted NB and free rtPA, induced rapid and persistent recanalization of occluded vessels. Finally, treatment of C3-gain-of-function mice with rtPA-tNB, that target ß2-GPI deposited in kidney glomeruli, decreased fibrin deposition, and improved urinalysis data with a greater efficiency than untargeted NB. Our findings suggest that targeting cell-bound ß2-GPI may represent an efficient and thrombus-specific thrombolytic strategy in both APS-related and APS-unrelated thrombotic conditions.


Subject(s)
Antiphospholipid Syndrome , Thromboembolism , Thrombosis , Animals , Mice , Rats , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Tissue Plasminogen Activator/pharmacology , Tissue Plasminogen Activator/therapeutic use , beta 2-Glycoprotein I , Endothelial Cells , Thrombosis/drug therapy , Thrombosis/etiology
3.
J Nanobiotechnology ; 21(1): 376, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37838659

ABSTRACT

BACKGROUND: Nanoparticles represent one of the most important innovations in the medical field. Among nanocarriers, polymeric nanoparticles (PNPs) attracted much attention due to their biodegradability, biocompatibility, and capacity to increase efficacy and safety of encapsulated drugs. Another important improvement in the use of nanoparticles as delivery systems is the conjugation of a targeting agent that enables the nanoparticles to accumulate in a specific tissue. Despite these advantages, the clinical translation of therapeutic approaches based on nanoparticles is prevented by their interactions with blood proteins. In fact, the so-formed protein corona (PC) drastically alters the biological identity of the particles. Adsorbed activated proteins of the complement cascade play a pivotal role in the clearance of nanoparticles, making them more easily recognized by macrophages, leading to their rapid elimination from the bloodstream and limiting their efficacy. Since the mouse is the most used preclinical model for human disease, this work compared human and mouse PC formed on untargeted PNPs (uPNPs) and targeted PNPs (tPNPs), paying particular attention to complement activation. RESULTS: Mouse and human serum proteins adsorbed differently to PNPs. The differences in the binding of mouse complement proteins are minimal, whereas human complement components strongly distinguish the two particles. This is probably due to the human origin of the Fc portion of the antibody used as targeting agent on tPNPs. tPNPs and uPNPs mainly activate complement via the classical and alternative pathways, respectively, but this pattern did not affect their binding and internalization in macrophages and only a limited consumption of the activity of the human complement system was documented. CONCLUSIONS: The results clearly indicate the presence of complement proteins on PNPs surface but partially derived from an unspecific deposition rather than an effective complement activation. The presence of a targeting antibody favors the activation of the classical pathway, but its absence allows an increased activation of the alternative pathway. This results in similar opsonization of both PNPs and similar phagocytosis by macrophages, without an impairment of the activity of circulating complement system and, consequently, not enhancing the susceptibility to infection.


Subject(s)
Nanoparticles , Protein Corona , Humans , Mice , Animals , Opsonization , Complement System Proteins/metabolism , Antibodies , Polymers
4.
Clin Immunol ; 178: 29-38, 2017 05.
Article in English | MEDLINE | ID: mdl-26732858

ABSTRACT

Mast cells (MCs) are innate immune cells that exert positive and negative immune modulatory functions capable to enhance or limit the intensity and/or duration of adaptive immune responses. Although MCs are crucial to regulate T cell immunity, their action in the pathogenesis of autoimmune diseases is still debated. Here we demonstrate that MCs play a crucial role in T1D pathogenesis so that their selective depletion in conditional MC knockout NOD mice protects them from the disease. MCs of diabetic NOD mice are overly inflammatory and secrete large amounts of IL-6 that favors differentiation of IL-17-secreting T cells at the site of autoimmunity. Moreover, while MCs of control mice acquire an IL-10+ phenotype upon interaction with FoxP3+ Treg cells, MCs of NOD mice do not undergo this tolerogenic differentiation. Our data indicate that overly inflammatory MCs unable to acquire a tolerogenic IL-10+ phenotype contribute to the pathogenesis of autoimmune T1D.


Subject(s)
Autoimmunity/immunology , Diabetes Mellitus, Type 1/immunology , Immune Tolerance/immunology , Islets of Langerhans/immunology , Mast Cells/immunology , Animals , Blood Glucose/metabolism , Chymases/genetics , Diabetes Mellitus, Type 1/metabolism , Flow Cytometry , Forkhead Transcription Factors/metabolism , Immunohistochemistry , Inflammation , Interleukin-10/immunology , Interleukin-17/immunology , Interleukin-6/immunology , Laser Capture Microdissection , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, Transgenic , Real-Time Polymerase Chain Reaction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology
5.
Front Immunol ; 14: 1200310, 2023.
Article in English | MEDLINE | ID: mdl-37359561

ABSTRACT

Introduction: MicroRNAs represent interesting targets for new therapies because their altered expression influences tumor development and progression. miR-17 is a prototype of onco-miRNA, known to be overexpressed in B-cell non-Hodgkin lymphoma (B-NHL) with peculiar clinic-biological features. AntagomiR molecules have been largely studied to repress the regulatory functions of up-regulated onco-miRNAs, but their clinical use is mainly limited by their rapid degradation, kidney elimination and poor cellular uptake when injected as naked oligonucleotides. Methods: To overcome these problems, we exploited CD20 targeted chitosan nanobubbles (NBs) for a preferential and safe delivery of antagomiR17 to B-NHL cells. Results: Positively charged 400 nm-sized nanobubbles (NBs) represent a stable and effective nanoplatform for antagomiR encapsulation and specific release into B-NHL cells. NBs rapidly accumulated in tumor microenvironment, but only those conjugated with a targeting system (antiCD20 antibodies) were internalized into B-NHL cells, releasing antagomiR17 in the cytoplasm, both in vitro and in vivo. The result is the down-regulation of miR-17 level and the reduction in tumor burden in a human-mouse B-NHL model, without any documented side effects. Discussion: Anti-CD20 targeted NBs investigated in this study showed physico-chemical and stability properties suitable for antagomiR17 delivery in vivo and represent a useful nanoplatform to address B-cell malignancies or other cancers through the modification of their surface with specific targeting antibodies.


Subject(s)
Chitosan , Lymphoma, B-Cell , MicroRNAs , Animals , Mice , Humans , Antagomirs , Lymphoma, B-Cell/genetics , MicroRNAs/genetics , B-Lymphocytes , Tumor Microenvironment
6.
Pharmaceutics ; 14(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36559099

ABSTRACT

Nanoparticles (NPs) are versatile candidates for nanomedical applications due to their unique physicochemical properties. However, their clinical applicability is hindered by their undesirable recognition by the immune system and the consequent immunotoxicity, as well as their rapid clearance in vivo. After injection, NPs are usually covered with layers of proteins, called protein coronas (PCs), which alter their identity, biodistribution, half-life, and efficacy. Therefore, the characterization of the PC is for in predicting the fate of NPs in vivo. The aim of this review was to summarize the state of the art regarding the intrinsic factors closely related to the NP structure, and extrinsic factors that govern PC formation in vitro. In addition, well-known opsonins, including complement, immunoglobulins, fibrinogen, and dysopsonins, such as histidine-rich glycoprotein, apolipoproteins, and albumin, are described in relation to their role in NP detection by immune cells. Particular emphasis is placed on their role in mediating the interaction of NPs with innate and adaptive immune cells. Finally, strategies to reduce PC formation are discussed in detail.

7.
Biomedicines ; 10(9)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36140353

ABSTRACT

The use of zebrafish (ZF) embryos as an in vivo model is increasingly attractive thanks to different features that include easy handling, transparency, and the absence of adaptive immunity until 4-6 weeks. These factors allow the development of xenografts that can be easily analyzed through fluorescence techniques. In this work, ZF were exploited to characterize the efficiency of drug-loaded polymeric NPs as a therapeutical approach for B-cell malignancies. Fluorescent probes, fluorescent transgenic lines of ZF, or their combination allowed to deeply examine biodistribution, elimination, and therapeutic efficacy. In particular, the fluorescent signal of nanoparticles (NPs) was exploited to investigate the in vivo distribution, while the colocalization between the fluorescence in macrophages and NPs allows following the elimination pathway of these polymeric NPs. Xenotransplanted human B-cells (Nalm-6) developed a reproducible model useful for demonstrating drug delivery by polymeric NPs loaded with doxorubicin and, as a consequence, the arrest of tumor growth and the reduction in tumor burden. ZF proved to be a versatile model, able to rapidly provide answers in the development of animal models and in the characterization of the activity and the efficacy of drug delivery systems.

8.
Pharmaceutics ; 13(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34452067

ABSTRACT

Oligonucleotide (ON) therapeutics are molecular target agents composed of chemically synthesized DNA or RNA molecules capable of inhibiting gene expression or protein function. How ON therapeutics can efficiently reach the inside of target cells remains a problem still to be solved in the majority of potential clinical applications. The chemical structure of ON compounds could affect their capability to pass through the plasma membrane. Other key factors are nuclease degradation in the extracellular space, renal clearance, reticulo-endothelial system, and at the target cell level, the endolysosomal system and the possible export via exocytosis. Several delivery platforms have been proposed to overcome these limits including the use of lipidic, polymeric, and inorganic nanoparticles, or hybrids between them. The possibility of evaluating the efficacy of the proposed therapeutic strategies in useful in vivo models is still a pivotal need, and the employment of zebrafish (ZF) models could expand the range of possibilities. In this review, we briefly describe the main ON therapeutics proposed for anticancer treatment, and the different strategies employed for their delivery to cancer cells. The principal features of ZF models and the pros and cons of their employment in the development of ON-based therapeutic strategies are also discussed.

9.
Cancers (Basel) ; 13(12)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204843

ABSTRACT

Due to the high expression of P-selectin glycoprotein ligand-1 (PSGL-1) in lymphoproliferative disorders and in multiple myeloma, it has been considered as a potential target for humoral immunotherapy, as well as an immune checkpoint inhibitor in T-cells. By investigating the expression of SELPLG in 678 T- and B-cell samples by gene expression profiling (GEP), further supported by tissue microarray and immunohistochemical analysis, we identified anaplastic large T-cell lymphoma (ALCL) as constitutively expressing SELPLG at high levels. Moreover, GEP analysis in CD30+ ALCLs highlighted a positive correlation of SELPLG with TNFRSF8 (CD30-coding gene) and T-cell receptor (TCR)-signaling genes (LCK, LAT, SYK and JUN), suggesting that the common dysregulation of TCR expression in ALCLs may be bypassed by the involvement of PSGL-1 in T-cell activation and survival. Finally, we evaluated the effects elicited by in vitro treatment with two anti-PSGL-1 antibodies (KPL-1 and TB5) on the activation of the complement system and induction of apoptosis in human ALCL cell lines. In conclusion, our data demonstrated that PSGL-1 is specifically enriched in ALCLs, altering cell motility and viability due to its involvement in CD30 and TCR signaling, and it might be considered as a promising candidate for novel immunotherapeutic approaches in ALCLs.

10.
Int J Pharm ; 574: 118895, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31862491

ABSTRACT

BACKGROUND: The effectiveness of therapies for chronic lymphocytic leukemia (CLL), the most common leukemia in Western countries adults, can be improved via a deeper understanding of its molecular abnormalities. Whereas the isoforms of the eukaryotic elongation factor 1A (eEF1A1 and eEF1A2) are implicated in different tumors, no information are available in CLL. METHODS: eEF1A1/eEF1A2 amounts were quantitated in the lymphocytes of 46 CLL patients vs normal control (real time PCR, western blotting). eEF1A1 role in CLL was investigated in a cellular (MEC-1) and animal model of CLL via its targeting by an aptamer (GT75) or a siRNA (siA1) delivered by electroporation (in vitro) or lipofection (in vivo). RESULTS: eEF1A1/eEF1A2 were elevated in CLL lymphocytes vs control. eEF1A1 but not eEF1A2 levels were higher in patients which died during the study compared to those surviving. eEF1A1 targeting (GT75/siA1) resulted in MEC-1 viability reduction/autophagy stimulation and in vivo tumor growth down-regulation. CONCLUSIONS: The increase of eEF1A1 in dead vs surviving patients may confer to eEF1A1 the role of a prognostic marker for CLL and possibly of a therapeutic target, given its involvement in MEC-1 survival. Specific aptamer/siRNA released by optimized delivery systems may allow the development of novel therapeutic options.


Subject(s)
Aptamers, Nucleotide/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Peptide Elongation Factor 1/genetics , RNA, Small Interfering/genetics , Aged , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Female , Humans , Male , Mice , Mice, SCID , Protein Isoforms/genetics
11.
J Oncol ; 2020: 4638192, 2020.
Article in English | MEDLINE | ID: mdl-32184825

ABSTRACT

The development of nanostructures for therapeutic purpose is rapidly growing, following the results obtained in vivo in animal models and in the clinical trials. Unfortunately, the potential therapeutic efficacy is not completely exploited, yet. This is mainly due to the fast clearance of the nanostructures in the body. Nanoparticles and the liver have a unique interaction because the liver represents one of the major barriers for drug delivery. This interaction becomes even more relevant and complex when the drug delivery strategies employing nanostructures are proposed for the therapy of liver diseases, such as hepatocellular carcinoma (HCC). In this case, the selective delivery of therapeutic nanoparticles to the tumor microenvironment collides with the tendency of nanostructures to be quickly eliminated by the organ. The design of a new therapeutic approach based on nanoparticles to treat HCC has to particularly take into consideration passive and active mechanisms to avoid or delay liver elimination and to specifically address cancer cells or the cancer microenvironment. This review will analyze the different aspects concerning the dual role of the liver, both as an organ carrying out a clearance activity for the nanostructures and as target for therapeutic strategies for HCC treatment.

12.
Front Immunol ; 9: 2203, 2018.
Article in English | MEDLINE | ID: mdl-30319647

ABSTRACT

Deposits of complement components have been documented in several human tumors suggesting a potential involvement of the complement system in tumor immune surveillance. In vitro and in vivo studies have revealed a double role played by this system in tumor progression. Complement activation in the cancer microenvironment has been shown to promote cancer growth through the release of the chemotactic peptide C5a recruiting myeloid suppressor cells. There is also evidence that tumor progression can be controlled by complement activated on the surface of cancer cells through one of the three pathways of complement activation. The aim of this review is to discuss the protective role of complement in cancer with special focus on the beneficial effect of complement-fixing antibodies that are efficient activators of the classical pathway and contribute to inhibit tumor expansion as a result of MAC-mediated cancer cell killing and complement-mediated inflammatory process. Cancer cells are heterogeneous in their susceptibility to complement-induced killing that generally depends on stable and relatively high expression of the antigen and the ability of therapeutic antibodies to activate complement. A new generation of monoclonal antibodies are being developed with structural modification leading to hexamer formation and enhanced complement activation. An important progress in cancer immunotherapy has been made with the generation of bispecific antibodies targeting tumor antigens and able to neutralize complement regulators overexpressed on cancer cells. A great effort is being devoted to implementing combined therapy of traditional approaches based on surgery, chemotherapy and radiotherapy and complement-fixing therapeutic antibodies. An effective control of tumor growth by complement is likely to be obtained on residual cancer cells following conventional therapy to reduce the tumor mass, prevent recurrences and avoid disabilities.


Subject(s)
Antibodies, Monoclonal/pharmacology , Complement Activation/drug effects , Complement System Proteins/immunology , Immunotherapy/methods , Neoplasms/therapy , Animals , Antigens, Neoplasm/immunology , Complement Activation/immunology , Complement System Proteins/metabolism , Disease Models, Animal , Disease Progression , Humans , Immunologic Surveillance/drug effects , Neoplasm, Residual , Neoplasms/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Escape/drug effects , Tumor Escape/immunology , Tumor Microenvironment/immunology
13.
Int J Nanomedicine ; 10: 4099-109, 2015.
Article in English | MEDLINE | ID: mdl-26124662

ABSTRACT

The expectations of nanoparticle (NP)-based targeted drug delivery systems in cancer, when compared with convectional therapeutic methods, are greater efficacy and reduced drug side effects due to specific cellular-level interactions. However, there are conflicting literature reports on enhanced tumor accumulation of targeted NPs, which is essential for translating their applications as improved drug-delivery systems and contrast agents in cancer imaging. In this study, we characterized biodegradable NPs conjugated with an anti-CD20 antibody for in vivo imaging and drug delivery onto tumor cells. NPs' binding specificity mediated by anti-CD20 antibody was evaluated on MEC1 cells and chronic lymphocytic leukemia patients' cells. The whole-body distribution of untargeted NPs and anti-CD20 NPs were compared by time-domain optical imaging in a localized human/mouse model of B-cell malignancy. These studies provided evidence that NPs' functionalization by an anti-CD20 antibody improves tumor pharmacokinetic profiles in vivo after systemic administration and increases in vivo imaging of tumor mass compared to non-targeted NPs. Together, drug delivery and imaging probe represents a promising theranostics tool for targeting B-cell malignancies.


Subject(s)
Antigens, CD20/chemistry , Drug Delivery Systems , Leukemia, B-Cell/diagnosis , Nanoparticles/chemistry , Polymers/chemistry , Animals , Cell Line, Tumor , Humans , Mice , Molecular Imaging
14.
J Hematol Oncol ; 7: 79, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25339346

ABSTRACT

Recently it was reported that microRNA from the miR-17 ~ 92 family may have a key role in chronic lymphocytic leukemia (CLL). Here, we designed specific oligonucleotides to target endogenous miR-17 (antagomiR17). In-vitro administration of antagomiR17 effectively reduced miR-17 expression and the proliferation of CLL-like MEC-1 cells. When injected in-vivo in tumor generated by the MEC-1 cells in SCID mice, antagomiR17 dramatically reduced tumor growth and significantly increase survival. Altogether, our results provide the rationale for the use of antagomiR17 as a novel potential therapeutic tool in CLL and in other lymphoproliferative disorders where miR-17 has a driver role in tumor progression.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , MicroRNAs/antagonists & inhibitors , Oligoribonucleotides/pharmacology , Animals , Cell Line, Tumor , Humans , Mice , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
15.
PLoS One ; 8(9): e74216, 2013.
Article in English | MEDLINE | ID: mdl-24098639

ABSTRACT

Current B-cell disorder treatments take advantage of dose-intensive chemotherapy regimens and immunotherapy via use of monoclonal antibodies. Unfortunately, they may lead to insufficient tumor distribution of therapeutic agents, and often cause adverse effects on patients. In this contribution, we propose a novel therapeutic approach in which relatively high doses of Hydroxychloroquine and Chlorambucil were loaded into biodegradable nanoparticles coated with an anti-CD20 antibody. We demonstrate their ability to effectively target and internalize in tumor B-cells. Moreover, these nanoparticles were able to kill not only p53 mutated/deleted lymphoma cell lines expressing a low amount of CD20, but also circulating primary cells purified from chronic lymphocitic leukemia patients. Their safety was demonstrated in healthy mice, and their therapeutic effects in a new model of Burkitt's lymphoma. The latter serves as a prototype of an aggressive lympho-proliferative disease. In vitro and in vivo data showed the ability of anti-CD20 nanoparticles loaded with Hydroxychloroquine and Chlorambucil to increase tumor cell killing in comparison to free cytotoxic agents or Rituximab. These results shed light on the potential of anti-CD20 nanoparticles carrying Hydroxychloroquine and Chlorambucil for controlling a disseminated model of aggressive lymphoma, and lend credence to the idea of adopting this therapeutic approach for the treatment of B-cell disorders.


Subject(s)
Antigens, CD20/therapeutic use , Chlorambucil/pharmacology , Disease Models, Animal , Hydroxychloroquine/pharmacology , Lymphoma, B-Cell/drug therapy , Nanoparticles/therapeutic use , Animals , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antigens, CD20/immunology , Apoptosis/drug effects , Autophagy/drug effects , Cell Survival/drug effects , Chlorambucil/therapeutic use , Drug Combinations , Drug Delivery Systems/methods , Female , Flow Cytometry , Hydroxychloroquine/therapeutic use , Immunohistochemistry , Mice , Mice, SCID , Microscopy, Electron, Transmission , Rituximab
SELECTION OF CITATIONS
SEARCH DETAIL