Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters

Uruguay Oncology Collection
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 189: 109975, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31787382

ABSTRACT

Coal plants represent one of the main sources of environmental pollution due to the combustion process of this mineral and the consequent release of gases and particles which, in significant quantities, can lead to a potential risk to health and the environment. The susceptibility of individuals to the genotoxic effects of coal mining can be modulated by genetic variations in the xenobiotic detoxification and DNA repair processes. The aim of this study was to evaluate if xenobiotic metabolism polymorphism, base excision repair polymorphisms and non-homologous end joining repair polymorphism, could modify individual susceptibility to genomic instability and epigenetic alterations induced in workers by occupational exposure to coal. In this study, polymerase chain reaction was used to examine the polymorphic sites. The sample population comprising 70 coal mine workers and 71 workers non-exposed to coal. Our results demonstrated the effect of individual genotypes on different biomarkers evaluated. Significant decrease in % of global DNA methylation were observed in CYP1A1 Val/- exposed individuals compared to CYP1A1 Ile/Ile individuals. Coal workers who carried the XRCC4 Ile/Ile genotype showed decrease NBUD frequencies, while the XRCC4 Thr/- genotype was associated with decrease in Buccal micronucleus cells for the group not exposed. No influence of GSTM1 null, GSTT1 null, GSTP1 Ile105Val, hOGG1 Ser326Cys, XRCC1 Arg194Trp polymorphisms was observed. Thus, the current study reinforces the importance of considering the effect of metabolizing and repair variant genotypes on the individual susceptibility to incorporate DNA damage, as these processes act in a coordinated manner to determine the final response to coal exposure.


Subject(s)
Coal Mining , Coal/toxicity , DNA Damage , DNA Methylation , Occupational Exposure , Polymorphism, Genetic , Telomere Homeostasis , Adolescent , Adult , Aged , Cytochrome P-450 CYP1A1/genetics , DNA Repair , DNA-Binding Proteins/genetics , Female , Genotype , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Humans , Male , Middle Aged , X-ray Repair Cross Complementing Protein 1/genetics , Xenobiotics/metabolism , Young Adult
2.
Mutagenesis ; 33(1): 87-95, 2018 02 24.
Article in English | MEDLINE | ID: mdl-29244183

ABSTRACT

Exposure to pesticides can trigger genotoxic and mutagenic processes through different pathways. However, epidemiological studies are scarce, and further work is needed to find biomarkers sensitive to the health of exposed populations. Considering that there are few evaluations of soybean farmers, the aim of this study was to assess the effects of human exposure to complex mixtures of pesticides. The alkaline comet assay modified with restriction enzyme (hOGG1: human 8-oxoguanine DNA glycosylase) was used to detect oxidised guanine, and compared with the buccal micronucleus cytome assay, global methylation, haematological parameters, biochemical analyses (serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, gamma-glutamyl-transferase and butyrylcholinesterase), and particle-induced X-ray emission (PIXE) for the analysis of inorganic elements. Farm workers (n = 137) exposed to different types of pesticides were compared with a non-exposed reference group (control; n = 83). Results of the enzyme-modified comet assay suggest oxidation of guanine in DNA generated by pesticides exposure. It was observed that DNA damage (comet assay and micronucleus test) was significantly increased in exposed individuals compared to the unexposed group. The micronucleus test demonstrated elimination of nuclear material by budding, defective cytokinesis and dead cells. Occupationally exposed individuals also showed genomic hypermethylation of DNA, which correlated with micronucleus frequency. No differences were detected regarding the haematological and biochemical parameters. Finally, significantly higher concentrations of Al and P were observed in the urine of the soybean farmers. DNA damage could be a consequence of the ability of the complex mixture, including Al and P, to cause oxidative damage. These data indicate that persistent genetic instability associated with hypermethylation of DNA in soybean workers after long-term exposure to a low-level to pesticides mixtures may be critical for the development of adverse health effects such as cancer.


Subject(s)
DNA Damage/drug effects , Epigenesis, Genetic/drug effects , Farmers , Occupational Exposure/adverse effects , Pesticides/toxicity , Adult , Biomarkers , Brazil , Comet Assay/methods , Complex Mixtures/toxicity , DNA Methylation , Humans , Male , Micronucleus Tests/methods , Middle Aged , Mouth Mucosa/cytology , Glycine max , X-Rays/adverse effects
3.
Mutagenesis ; 33(2): 119-128, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29669110

ABSTRACT

Tobacco farming is an important economic income in Brazil, although it has been challenged as regard the occupational exposure to both pesticides and nicotine endured by farmers. Chronic occupational exposure to complex mixtures can lead to health hazardous. We examined genomic instability and epigenetic changes in tobacco farmers occupationally exposed to pesticide mixtures and nicotine at tobacco fields. DNA damage was assessed by alkaline comet assay in blood cells. Genomic DNA was isolated, and telomere length was measured using quantitative polymerase chain reaction assay. We measured 5-methyl-2'-deoxycytidine, a marker of global DNA methylation, and p16 promoter methylation. The oxidative profile was evaluated by trolox equivalent antioxidant capacity and lipid peroxidation (thiobarbituric acid reactive substances) in serum. Exposure parameters, plasma cotinine and inorganic element levels, were also measured. DNA damage was significantly elevated for farmers in relation to unexposed group (P < 0.001; Mann-Whitney test) and positively associated with years of exposure. Inverse relationship between DNA damage and total equivalent antioxidant activity was demonstrated for exposed and unexposed groups. Exposed group showed significantly shorter telomeres (P < 0.001; unpaired t-test) and DNA hypomethylation (P < 0.001; unpaired t-test), as well as p16 hypermethylation (P = 0.003; Mann-Whitney test). Lipid peroxidation was increased for exposed group in relation to unexposed one (P = 0.02; Mann-Whitney test) and presented a positive correlation with global DNA methylation (P = 0.0264). Farmers have increased plasma cotinine levels (P < 0.001) and inorganic elements (phosphorus, sulphur and chlorine) in relation to unexposed group. Elevated oxidative stress levels due to chronic occupational pesticide mixtures and nicotine exposure in tobacco farmers were associated with higher DNA damage, shorter telomeres and altered DNA methylation. Telomere-accelerated attrition due to exposure may be potential intermediate step before a disease state.


Subject(s)
DNA Damage/drug effects , DNA Methylation/drug effects , Genomic Instability/drug effects , Telomere Shortening/drug effects , Adult , Aged , Brazil , Comet Assay , DNA Methylation/genetics , Farmers , Female , Humans , Lipid Peroxidation/drug effects , Male , Middle Aged , Occupational Exposure , Oxidative Stress/drug effects , Pesticides/toxicity , Telomere/drug effects , Telomere/genetics , Telomere Shortening/genetics , Nicotiana/toxicity
4.
BMC Cancer ; 15: 434, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26012346

ABSTRACT

BACKGROUND: The study of genetic variants alone is not enough to explain a complex disease like cancer. Alterations in DNA methylation patterns have been associated with different types of tumor. In order to detect markers of susceptibility for the development of cutaneous melanoma and breast cancer in the Uruguayan population, we integrated genetic and epigenetic information of patients and controls. METHODS: We performed two case-control studies that included 49 individuals with sporadic cutaneous melanoma and 73 unaffected controls, and 179 women with sporadic breast cancer and 209 women controls. We determined the level of global leukocyte DNA methylation using relative quantification of 5mdC by HPLC, and we compared methylation levels between cases and controls with nonparametric statistical tests. Since the Uruguayan population is admixed and both melanoma and breast cancer have very high incidences in Uruguay compared to other populations, we examined whether individual ancestry influences global leucocyte DNA methylation status. We carried out a correlation analysis between the percentage of African, European and Native American individual ancestries, determined using 59 ancestry informative markers, and global DNA methylation in all participants. RESULTS: We detected global DNA hypomethylation in leukocytes of melanoma and breast cancer patients compared with healthy controls (p < 0.001). Additionally, we found a negative correlation between African ancestry and global DNA methylation in cancer patients (p <0.005). CONCLUSIONS: These results support the potential use of global DNA methylation as a biomarker for cancer risk. In addition, our findings suggest that the ancestral genome structure generated by the admixture process influences DNA methylation patterns, and underscore the importance of considering genetic ancestry as a modifying factor in epigenetic association studies in admixed populations such as Latino ones.


Subject(s)
Breast Neoplasms/genetics , DNA Methylation/genetics , Ethnicity/genetics , Melanoma/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Female , Genetics, Population , Humans , Leukocytes/metabolism , Male , Melanoma/pathology , Middle Aged , Polymorphism, Single Nucleotide , Skin Neoplasms , Melanoma, Cutaneous Malignant
5.
BMC Womens Health ; 15: 11, 2015.
Article in English | MEDLINE | ID: mdl-25783644

ABSTRACT

BACKGROUND: Uruguay exhibits one of the highest rates of breast cancer in Latin America, similar to those of developed nations, the reasons for which are not completely understood. In this study we investigated the effect that ancestral background has on breast cancer susceptibility among Uruguayan women. METHODS: We carried out a case-control study of 328 (164 cases, 164 controls) women enrolled in public hospitals and private clinics across the country. We estimated ancestral proportions using a panel of nuclear and mitochondrial ancestry informative markers (AIMs) and tested their association with breast cancer risk. RESULTS: Nuclear individual ancestry in cases was (mean ± SD) 9.8 ± 7.6% African, 13.2 ± 10.2% Native American and 77.1 ± 13.1% European, and in controls 9.1 ± 7.5% African, 14.7 ± 11.2% Native American and 76.2 ± 14.2% European. There was no evidence of a difference in nuclear or mitochondrial ancestry between cases and controls. However, European mitochondrial haplogroup H was associated with breast cancer (OR = 2.0; 95% CI 1.1, 3.5). CONCLUSIONS: We have not found evidence that overall genetic ancestry differs between breast cancer patients and controls in Uruguay but we detected an association of the disease with a European mitochondrial lineage, which warrants further investigation.


Subject(s)
American Indian or Alaska Native/genetics , Black People/genetics , Breast Neoplasms/genetics , DNA, Mitochondrial/analysis , White People/genetics , Adult , Aged , Breast Neoplasms/ethnology , Case-Control Studies , DNA/analysis , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Middle Aged , Uruguay
6.
Sci Rep ; 14(1): 909, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195762

ABSTRACT

Cellular senescence is a therapy endpoint in melanoma, and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and mitochondrial energy metabolism supports resistance to therapy in melanoma. In a previous report we showed that senescence, induced by the DNA methylating agent temozolomide, increased the level of fusion proteins mitofusin 1 and 2 in melanoma, and silencing Mfn1 or Mfn2 expression reduced interleukin-6 secretion by senescent cells. Here we expanded these observations evaluating the secretome of senescent melanoma cells using shotgun proteomics, and explored the impact of silencing Mfn1 on the SASP. A significant increase in proteins reported to reduce the immune response towards the tumor was found in the media of senescent cells. The secretion of several of these immunomodulatory proteins was affected by Mfn1 silencing, among them was galectin-9. In agreement, tumors lacking mitofusin 1 responded better to treatment with the methylating agent dacarbazine, tumor size was reduced and a higher immune cell infiltration was detected in the tumor. Our results highlight mitochondrial dynamic proteins as potential pharmacological targets to modulate the SASP in the context of melanoma treatment.


Subject(s)
Melanoma , Humans , Melanoma/drug therapy , Melanoma/genetics , Senescence-Associated Secretory Phenotype , Cellular Senescence/genetics , Mitochondria , Phenotype , Tumor Microenvironment
7.
Mol Oncol ; 15(2): 473-486, 2021 02.
Article in English | MEDLINE | ID: mdl-33145876

ABSTRACT

Human diversity is one of the main pitfalls in the development of robust worldwide biomarkers in oncology. Epigenetic variability across human populations is associated with different genetic backgrounds, as well as variable lifestyles and environmental exposures, each of which should be investigated. To identify potential non-invasive biomarkers of sporadic breast cancer in the Uruguayan population, we studied genome-wide DNA methylation using Illumina methylation arrays in leukocytes of 22 women with sporadic breast cancer and 10 healthy women in a case-control study. We described a panel of 38 differentially methylated CpG positions that was able to cluster breast cancer patients (BCP) and controls, and that also recapitulated methylation differences in 12 primary breast tumors and their matched normal breast tissue. Moving forward, we simplified the detection method to improve its applicability in a clinical setting and used an independent well-characterized cohort of 80 leukocyte DNA samples from BCP and 80 healthy controls to validate methylation results at specific cancer-related genes. Our investigations identified methylation at CYFIP1 as a novel epigenetic biomarker candidate for sporadic breast cancer in the Uruguayan population. These results provide a proof-of-concept for the design of larger studies aimed at validating biomarker panels for the Latin American population.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , DNA Methylation , DNA, Neoplasm , Databases, Nucleic Acid , Hispanic or Latino , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/ethnology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Case-Control Studies , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Disease-Free Survival , Female , Humans , Survival Rate , United States/epidemiology
8.
Genes (Basel) ; 11(11)2020 10 28.
Article in English | MEDLINE | ID: mdl-33126731

ABSTRACT

Among Latin American women, breast cancer incidences vary across populations. Uruguay and Argentina have the highest rates in South America, which are mainly attributed to strong, genetic European contributions. Most genetic variants associated with breast cancer were described in European populations. However, the vast majority of genetic contributors to breast cancer risk remain unknown. Here, we report the results of a candidate gene association study of sporadic breast cancer in 176 cases and 183 controls in the Uruguayan population. We analyzed 141 variants from 98 loci that have been associated with overall breast cancer risk in European populations. We found weak evidence for the association of risk variants rs294174 (ESR1), rs16886165 (MAP3K1), rs2214681 (CNTNAP2), rs4237855 (VDR), rs9594579 (RANKL), rs8183919 (PTGIS), rs2981582 (FGFR2), and rs1799950 (BRCA1) with sporadic breast cancer. These results provide useful insight into the genetic susceptibility to sporadic breast cancer in the Uruguayan population and support the use of genetic risk scores for individualized screening and prevention.


Subject(s)
Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Case-Control Studies , Female , Genetic Association Studies , Humans , Latin America/epidemiology , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors , Uruguay/epidemiology
9.
Sci Rep ; 9(1): 6325, 2019 04 19.
Article in English | MEDLINE | ID: mdl-31004106

ABSTRACT

The Candiota coal mine in Rio Grande do Sul (RS) is one of the largest in Brazil. Coal is a fossil fuel that causes environmental impacts from its extraction to combustion due to the release of different agents, such as polycyclic aromatic hydrocarbons (PAH) and heavy metals. Ctenomys torquatus are herbivorous and subterranean rodents that dig tunnels with their paws and teeth and can be exposed to coal through contaminated food. Exposure to pollutants can cause DNA damage and affect different tissues, inducing alterations in the population structure and genetic diversity. Our study aimed to evaluate the effect of exposure to coal and its derivatives on the C. torquatus population and to examine the relationship of coal exposure with variations in absolute telomere length (aTL), global DNA methylation and genotoxicity. Our study showed an inverse correlation between telomere length and coal exposure in addition to an increase in DNA damage. The results indicate that coal and its byproducts can contribute to the alteration of the C. torquatus population structure, as evidenced by a reduction in the number of adults.


Subject(s)
Coal Mining , Coal/adverse effects , DNA Damage/drug effects , Rodentia , Telomere Homeostasis/drug effects , Animals , Humans , Population Dynamics , Rodentia/genetics , Rodentia/metabolism
10.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 36-41, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30442342

ABSTRACT

Coal is a mixture of several chemicals, mainly inorganic elements and polycyclic aromatic hydrocarbons, many of which have mutagenic and carcinogenic effects. Pneumoconiosis, fibrosis, asbestosis, silicosis, emphysema, loss of lung function and cancer are some examples of coal-related disorders. The aim of this study was to analyze coal miners with respect to telomere length (TL) and percentage (%) of global DNA methylation. The study involved 82 participants divided into two groups: 55 workers exposed to coal and 27 non-exposed individuals. DNA was isolated from peripheral blood samples from all individuals. Telomeres were measured by quantitative real time polymerase chain reaction (qPCR) and global DNA methylation levels were performed by the relative quantitation of 5-methyl-2'-deoxycytidine (5-mdC) by high-performance liquid chromatography (HPLC). TL measurements showed a mean of 9,199 bp (±4,196) for non-exposed and 7,545 bp (±2,703) for exposed groups, and% of global DNA methylation a mean of 2.78% (±0.41) for non-exposed and 3.00% (±0.37) for exposed individuals. Occupationally exposed individuals showed a significant decrease of TL (P < 0.05; Mann-Whitney test) and increase in the percentage of global DNA methylation (P < 0.05; Mann-Whitney test) when compared to the non-exposed group. This study showed that occupational exposure to coal and products of combustion is positively associated with TL and DNA methylation. Previously, we have evaluated the same individuals using comet assay, micronucleus (MN) test, oxidative stress and inorganic elements. No correlations were observed between TL and methylation with previous data in the exposed group. Further studies are needed to determine whether these alterations are associated with induced disease outcomes and if these events could be determinants to identify cancer risk.


Subject(s)
Coal Mining , Comet Assay/methods , DNA Damage , DNA Methylation , Environmental Monitoring/methods , Occupational Exposure/analysis , Telomere Homeostasis , Adult , Aged , Case-Control Studies , Cells, Cultured , Female , Humans , Lymphocytes/drug effects , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Middle Aged , Occupational Exposure/adverse effects , Oxidative Stress , Young Adult
11.
Oxid Med Cell Longev ; 2018: 7017423, 2018.
Article in English | MEDLINE | ID: mdl-29967663

ABSTRACT

Pesticides used at tobacco fields are associated with genomic instability, which is proposed to be sensitive to nutritional intake and may also induce epigenetic changes. We evaluated the effect of dietary intake and genetic susceptibility polymorphisms in MTHFR (rs1801133) and TERT (rs2736100) genes on genomic and epigenetic instability in tobacco farmers. Farmers, when compared to a nonexposed group, showed increased levels of different parameters of DNA damage (micronuclei, nucleoplasmic bridges, and nuclear buds), evaluated by cytokinesis-block micronucleus cytome assay. Telomere length (TL) measured by quantitative PCR was shorter in exposed individuals. Global DNA methylation was significantly decreased in tobacco farmers. The exposed group had lower dietary intake of fiber, but an increase in cholesterol; vitamins such as B6, B12, and C; ß-carotene; and α-retinol. Several trace and ultratrace elements were found higher in farmers than in nonfarmers. The MTHFR CT/TT genotype influenced nucleoplasmic bridges, nuclear buds, and TL in the exposed group, whereas TERT GT/TT only affected micronucleus frequency. We observed a positive correlation of TL and lipids and an inverse correlation of TL and fibers. The present data suggest an important role of dietary intake and subjects' genetic susceptibility to xenobiotics-induced damages and epigenetic alterations in tobacco farmers occupationally exposed to mixtures of pesticides.


Subject(s)
Diet , Genetic Predisposition to Disease/genetics , Genomic Instability/drug effects , Occupational Exposure/adverse effects , Pesticides/adverse effects , Adult , Brazil , DNA Damage/drug effects , DNA Damage/genetics , Farmers , Female , Genomic Instability/genetics , Genotype , Humans , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Middle Aged , Polymorphism, Single Nucleotide , Telomerase/genetics , Telomere Shortening/drug effects , Nicotiana
12.
Oxid. Med. Cell Longev ; 2018: [13 p.], 2018. tab
Article in English | URUCAN | ID: bcc-5219

ABSTRACT

Pesticides used at tobacco fields are associated with genomic instability, which is proposed to be sensitive to nutritional intake and may also induce epigenetic changes. We evaluated the effect of dietary intake and genetic susceptibility polymorphisms in MTHFR (rs1801133) and TERT (rs2736100) genes on genomic and epigenetic instability in tobacco farmers. Farmers, when compared to a nonexposed group, showed increased levels of different parameters of DNA damage (micronuclei, nucleoplasmic bridges, and nuclear buds), evaluated by cytokinesis-block micronucleus cytome assay. Telomere length (TL) measured by quantitative PCR was shorter in exposed individuals. Global DNA methylation was significantly decreased in tobacco farmers. The exposed group had lower dietary intake of fiber, but an increase in cholesterol; vitamins such as B6, B12, and C; β-carotene; and α-retinol. Several trace and ultratrace elements were found higher in farmers than in nonfarmers. The MTHFR CT/TT genotype influenced nucleoplasmic bridges, nuclear buds, and TL in the exposed group, whereas TERT GT/TT only affected micronucleus frequency. We observed a positive correlation of TL and lipids and an inverse correlation of TL and fibers. The present data suggest an important role of dietary intake and subjects' genetic susceptibility to xenobiotics-induced damages and epigenetic alterations in tobacco farmers occupationally exposed to mixtures of pesticides(AU)


Subject(s)
Humans , Pesticides/toxicity , Nicotiana , Diet , Genetic Predisposition to Disease/genetics , Occupational Exposure/adverse effects , Bibliography, National , Uruguay , Brazil
13.
BMC Cancer ; 15: [8 p.], 2015.
Article in English | URUCAN | ID: bcc-4941

ABSTRACT

BACKGROUND:The study of genetic variants alone is not enough to explain a complex disease like cancer. Alterations in DNA methylation patterns have been associated with different types of tumor. In order to detect markers of susceptibility for the development of cutaneous melanoma and breast cancer in the Uruguayan population, we integrated genetic and epigenetic information of patients and controls.METHODS:We performed two case-control studies that included 49 individuals with sporadic cutaneous melanoma and 73 unaffected controls, and 179 women with sporadic breast cancer and 209 women controls. We determined the level of global leukocyte DNA methylation using relative quantification of 5mdC by HPLC, and we compared methylation levels between cases and controls with nonparametric statistical tests. Since the Uruguayan population is admixed and both melanoma and breast cancer have very high incidences in Uruguay compared to other populations, we examined whether individual ancestry influences global leucocyte DNA methylation status. We carried out a correlation analysis between the percentage of African, European and Native American individual ancestries, determined using 59 ancestry informative markers, and global DNA methylation in all participants.RESULTS:We detected global DNA hypomethylation in leukocytes of melanoma and breast cancer patients compared with healthy controls (p < 0.001). Additionally, we found a negative correlation between African ancestry and global DNA methylation in cancer patients (p <0.005).CONCLUSIONS:These results support the potential use of global DNA methylation as a biomarker for cancer risk. In addition, our findings suggest that the ancestral genome structure generated by the admixture process influences DNA methylation patterns, and underscore the importance of considering genetic ancestry as a modifying factor in epigenetic association studies in admixed populations such as Latino ones(AU)


Subject(s)
Humans , Melanoma/genetics , Breast Neoplasms/genetics , DNA Methylation/genetics , Bibliography, National , Uruguay
14.
BMC Womens Health ; 15: [10 p.], 2015.
Article in English | URUCAN | ID: bcc-4914

ABSTRACT

Uruguay exhibits one of the highest rates of breast cancer in Latin America, similar to those of developed nations, the reasons for which are not completely understood. In this study we investigated the effect that ancestral background has on breast cancer susceptibility among Uruguayan women.METHODS:We carried out a case-control study of 328 (164 cases, 164 controls) women enrolled in public hospitals and private clinics across the country. We estimated ancestral proportions using a panel of nuclear and mitochondrial ancestry informative markers (AIMs) and tested their association with breast cancer risk.RESULTS:Nuclear individual ancestry in cases was (mean ± SD) 9.8 ± 7.6% African, 13.2 ± 10.2% Native American and 77.1 ± 13.1% European, and in controls 9.1 ± 7.5% African, 14.7 ± 11.2% Native American and 76.2 ± 14.2% European. There was no evidence of a difference in nuclear or mitochondrial ancestry between cases and controls. However, European mitochondrial haplogroup H was associated with breast cancer (OR = 2.0; 95% CI 1.1, 3.5).CONCLUSIONS:We have not found evidence that overall genetic ancestry differs between breast cancer patients and controls in Uruguay but we detected an association of the disease with a European mitochondrial lineage, which warrants further investigation(AU)


Subject(s)
Humans , Breast Neoplasms/genetics , Bibliography, National , Uruguay
15.
Mol Biochem Parasitol ; 167(1): 41-7, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19383516

ABSTRACT

Secreted cysteine proteases are major players in host-parasite interactions; in Fasciola hepatica, a distinct group of cathepsins L was found to be predominantly expressed in the juvenile stages, but their enzymatic properties were unknown. Cathepsin L3 (FhCL3) is a main component of the juvenile secretory products and may participate in invasion. To characterize the biochemical properties, the proenzyme was expressed in the methylotrophic yeast Hansenula polymorpha and the mature enzyme was obtained from the culture medium. FhCL3 exhibited optimal activity and stability at neutral pH and a noticeable restricted substrate specificity with 70-fold preference for Tos-Gly-Pro-Arg-AMC over typical cathepsin substrates with hydrophobic or aliphatic residues in the S2 position. Accordingly, FhCL3 efficiently cleaved type I collagen over different pH and temperature conditions, but it did not cleave immunoglobulin. While most cathepsin cysteine proteinases are unable to digest collagen, mammalian cathepsin K, adult F. hepatica FhCL2 and the plant zingipain can also cleave collagen and substrates with Pro in P2 position, but only FhCL3 and zingipain hydrolyze these substrates with the highest efficiency. Molecular modeling and structural comparisons of the collagen cleaving cathepsins indicated that the strong substrate selectivity observed might be due to steric restrictions imposed by bulky aromatic residues at the S2-S3 subsites. The remarkable similarities of the active site clefts highlight the evolutive constrains acting on enzyme function. The presence of a collagen cleaving enzyme in F. hepatica juvenile stages is suggestive of a role in tissue invasion, an essential feature for the establishment of the parasites in their host.


Subject(s)
Catalytic Domain , Cathepsins/chemistry , Cathepsins/metabolism , Collagen/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Fasciola hepatica/enzymology , Animals , Cathepsin L , DNA, Helminth/chemistry , DNA, Helminth/genetics , Enzyme Stability , Gene Expression , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Pichia/genetics , Protein Structure, Tertiary , Sequence Analysis, DNA , Temperature
16.
Mutagenesis ; 33: 119-128, 2018. tab
Article in English | URUCAN | ID: bcc-5331

ABSTRACT

Tobacco farming is an important economic income in Brazil, although it has been challenged as regard the occupational exposure to both pesticides and nicotine endured by farmers. Chronic occupational exposure to complex mixtures can lead to health hazardous. We examined genomic instability and epigenetic changes in tobacco farmers occupationally exposed to pesticide mixtures and nicotine at tobacco fields. DNA damage was assessed by alkaline comet assay in blood cells. Genomic DNA was isolated, and telomere length was measured using quantitative polymerase chain reaction assay. We measured 5-methyl-2'-deoxycytidine, a marker of global DNA methylation, and p16 promoter methylation. The oxidative profile was evaluated by trolox equivalent antioxidant capacity and lipid peroxidation (thiobarbituric acid reactive substances) in serum. Exposure parameters, plasma cotinine and inorganic element levels, were also measured. DNA damage was significantly elevated for farmers in relation to unexposed group (P < 0.001; Mann-Whitney test) and positively associated with years of exposure. Inverse relationship between DNA damage and total equivalent antioxidant activity was demonstrated for exposed and unexposed groups. Exposed group showed significantly shorter telomeres (P < 0.001; unpaired t-test) and DNA hypomethylation (P < 0.001; unpaired t-test), as well as p16 hypermethylation (P = 0.003; Mann-Whitney test). Lipid peroxidation was increased for exposed group in relation to unexposed one (P = 0.02; Mann-Whitney test) and presented a positive correlation with global DNA methylation (P = 0.0264). Farmers have increased plasma cotinine levels (P < 0.001) and inorganic elements (phosphorus, sulphur and chlorine) in relation to unexposed group(AU)(cont)


Subject(s)
Humans , Nicotiana/toxicity , Occupational Exposure , Pesticides/toxicity , Bibliography, National , Uruguay
17.
Biol Chem ; 383(7-8): 1215-21, 2002.
Article in English | MEDLINE | ID: mdl-12437108

ABSTRACT

The N-terminal propeptides of cysteine proteinases play regulatory roles in the folding and stability of their catalytic domains, as well as being potent and highly specific inhibitors of their parental mature enzymes. Cysteine proteinases play a major role in the biology of the parasitic trematode Fasciola hepatica; in particular, this organism secretes significant amounts of cathepsin L enzymes. The isolated propeptide of F. hepatica cathepsin L1 functioned as a chaperone for the mature enzyme in renaturation experiments. A double point mutation (N701/F721) within the GxNxFxD motif of the propeptide affected its conformation and markedly decreased its affinity for the mature enzyme. When this mutation was introduced into preprocathepsin L1 expressed in yeast, the secretion of active enzyme dropped dramatically. However, significant enzyme activity was recovered from the culture supernatants after denaturation and renaturation in the presence of native propeptide. Thus, the variant prosegment gave rise to an enzyme with altered conformation, which could be refolded to the active form with the assistance of the native propeptide.


Subject(s)
Cathepsins/chemistry , Cathepsins/physiology , Enzyme Precursors/physiology , Fasciola hepatica/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Cathepsin L , Cathepsins/biosynthesis , Cathepsins/metabolism , Cysteine Endopeptidases , Kinetics , Molecular Chaperones/physiology , Point Mutation , Protein Conformation , Protein Folding , Protein Renaturation
SELECTION OF CITATIONS
SEARCH DETAIL